Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1) 2x+1=15-5x \)
\(⇔2x+5x=15-1\)
\(⇔7x=14\)
\(⇔x=2\)
vậy pt có 1 nghiệm là x=2
\(2) 3x-2=2x+5\)
\(⇔3x-2x=5+2\)
\(⇔x=7\)
vậy pt có 1 nghiệm là x=7
\(3) 7(x-2)=5(3x+1)\)
\(⇔7x-14=15x+5\)
\(⇔7x-15x=5+14\)
\(⇔-8x=19\)
\(⇔x=-\dfrac{19}{8}\)
vậy pt có 1 nghiệm là x=-\(\dfrac{19}{8}\)
\(4) 2x+5=20-3x\)
\(⇔2x+3x=20-5\)
\(⇔5x=15\)
\(⇔x=3\)
vậy pt có 1 nghiệm là x=3
\(5) -4x+8=0\)
\(⇔-4x=-8\)
\(⇔x=2\)
vậy pt có 1 nghiệm là x=2
\(6) x-3=10-5x\)
\(⇔x+5x=10+3\)
\(⇔6x=13\)
\(⇔x=\dfrac{13}{6}\)
vậy pt có 1 nghiệm là \(x=\dfrac{13}{6}\)
\(7) 3x-1=x+3\)
\(⇔3x-x=3+1\)
\(⇔2x=4\)
\(⇔x=2\)
vậy pt có 1 nghiệm là x=2
\(8) 2(x+1)=5x-7\)
\(⇔2x+2=5x-7\)
\(⇔2x-5x=-7-2\)
\(⇔-3x=-9\)
\(⇔x=3\)
vậy pt có 1 nghiệm là x=3.
\(\frac{x+1}{x-2}+\frac{x-1}{x+2}=\frac{2\left(x^2+2\right)}{x^2-4}\left(x\ne\pm2\right)\)
\(\Leftrightarrow\frac{\left(x+1\right)\left(x+2\right)+\left(x-1\right)\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}=\frac{2\left(x^2+2\right)}{x^2-4}\)
\(\Leftrightarrow\frac{2x^2+4}{x^2-4}=\frac{2x^2+4}{x^2-4}\)
Vậy phương trình này có vô số nghiệm x thỏa mãn trừ x khác 2 và -2
a,\(2x+5=2-x\)
\(< =>2x+x+5-2=0\)
\(< =>3x+3=0\)
\(< =>x=-1\)
b, \(/x-7/=2x+3\)
Với \(x\ge7\)thì \(PT< =>x-7=2x+3\)
\(< =>2x-x+3+7=0\)
\(< =>x+10=0< =>x=-10\)( lọai )
Với \(x< 7\)thì \(PT< =>7-x=2x+3\)
\(< =>2x+x+3-7=0\)
\(< =>3x-4=0< =>x=\frac{4}{3}\) ( loại )
c,\(\frac{4}{x+2}-\frac{4x-6}{4x-x^3}=\frac{x-3}{x\left(x-2\right)}\left(đk:x\ne-2;0;2\right)\)
\(< =>\frac{4x\left(x-2\right)}{x\left(x-2\right)\left(x+2\right)}+\frac{4x-6}{x\left(x-2\right)\left(2+x\right)}=\frac{\left(x-3\right)\left(x+2\right)}{x\left(x-2\right)\left(x+2\right)}\)
\(< =>4x^2-8x+4x-6=x^2-x-6\)
\(< =>4x^2-x^2-4x+x-6+6=0\)
\(< =>3x^2-3x=0< =>3x\left(x-1\right)=0< =>\orbr{\begin{cases}x=0\left(loai\right)\\x=1\left(tm\right)\end{cases}}\)
1/ \(1+\frac{2}{x-1}+\frac{1}{x+3}=\frac{x^2+2x-7}{x^2+2x-3}\)
ĐKXĐ: \(\hept{\begin{cases}x-1\ne0\\x+3\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ne1\\x\ne-3\end{cases}}\)
<=> \(1+\frac{2\left(x+3\right)+x-1}{\left(x-1\right)\left(x+3\right)}=\frac{x^2+2x-3-5}{x^2+2x-3}\)
<=> \(1+\frac{2x+6+x-1}{x^2+2x-3}=1-\frac{5}{x^2+2x-3}\)
<=> \(\frac{3x+5}{x^2+2x-3}+\frac{5}{x^2+2x-3}=1-1\)
<=> \(\frac{3x+5}{x^2+2x-3}+\frac{5}{x^2+2x-3}=0\)
<=> \(\frac{3x+10}{x^2+2x-3}=0\)
<=> \(3x+10=0\)
<=> \(x=-\frac{10}{3}\)
Câu 1 :
a, \(\frac{3\left(2x+1\right)}{4}-\frac{5x+3}{6}=\frac{2x-1}{3}-\frac{3-x}{4}\)
\(\Leftrightarrow\frac{6x+3}{4}+\frac{3-x}{4}=\frac{2x-1}{3}+\frac{5x+3}{6}\)
\(\Leftrightarrow\frac{5x+6}{4}=\frac{9x+1}{6}\Leftrightarrow\frac{30x+36}{24}=\frac{36x+4}{24}\)
Khử mẫu : \(30x+36=36x+4\Leftrightarrow-6x=-32\Leftrightarrow x=\frac{32}{6}=\frac{16}{3}\)
tương tự
\(\frac{19}{4}-\frac{2\left(3x-5\right)}{5}=\frac{3-2x}{10}-\frac{3x-1}{4}\)
\(< =>\frac{19.5}{20}-\frac{8\left(3x-5\right)}{20}=\frac{2\left(3-2x\right)}{20}-\frac{5\left(3x-1\right)}{20}\)
\(< =>95-24x+40=6-4x-15x+5\)
\(< =>-24x+135=-19x+11\)
\(< =>5x=135-11=124\)
\(< =>x=\frac{124}{5}\)
\(\Leftrightarrow\frac{14}{15}.\frac{20}{21}.\frac{19}{20}.\frac{35}{36}.\frac{44}{45}.\frac{54}{55}.5\left(x-2\right)=2x+3\\ \Leftrightarrow\frac{532}{135}=\frac{2x+3}{x-2}\Leftrightarrow270x+405=532x-1064\\ \Leftrightarrow532x-270x=405+1064\Leftrightarrow262x=1469\Leftrightarrow x=\frac{1469}{262}\)