K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 8 2017

a)\(\left(x-1\right)\sqrt{x+1}+\sqrt{2x+1}=\sqrt{x+2}\)

ĐK:\(x\ge-\frac{1}{2}\)

\(\Leftrightarrow\left(x-1\right)\sqrt{x+1}+\sqrt{2x+1}-\sqrt{3}=\sqrt{x+2}-\sqrt{3}\)

\(\Leftrightarrow\left(x-1\right)\sqrt{x+1}+\frac{2x+1-3}{\sqrt{2x+1}+\sqrt{3}}=\frac{x+2-3}{\sqrt{x+2}+\sqrt{3}}\)

\(\Leftrightarrow\left(x-1\right)\sqrt{x+1}+\frac{2x-2}{\sqrt{2x+1}+\sqrt{3}}=\frac{x-1}{\sqrt{x+2}+\sqrt{3}}\)

\(\Leftrightarrow\left(x-1\right)\sqrt{x+1}+\frac{2\left(x-1\right)}{\sqrt{2x+1}+\sqrt{3}}-\frac{x-1}{\sqrt{x+2}+\sqrt{3}}=0\)

\(\Leftrightarrow\left(x-1\right)\left(\sqrt{x+1}+\frac{2}{\sqrt{2x+1}+\sqrt{3}}-\frac{1}{\sqrt{x+2}+\sqrt{3}}\right)=0\)

Suy ra x=1

b)\(\frac{1}{\left(x-1\right)^2}+\sqrt{3x+1}=\frac{1}{x^2}+\sqrt{x+2}\)

\(\Leftrightarrow\frac{1}{\left(x-1\right)^2}-4+\sqrt{3x+1}-\sqrt{\frac{5}{2}}=\frac{1}{x^2}-4+\sqrt{x+2}-\sqrt{\frac{5}{2}}\)

\(\Leftrightarrow\frac{4x^2-8x+3}{-x^2+2x-1}+\frac{3x+1-\frac{5}{2}}{\sqrt{3x+1}+\sqrt{\frac{5}{2}}}=\frac{-\left(4x^2-1\right)}{x^2}+\frac{x+2-\frac{5}{2}}{\sqrt{x+2}+\sqrt{\frac{5}{2}}}\)

\(\Leftrightarrow\frac{2\left(x-\frac{1}{2}\right)\left(2x-3\right)}{-x^2+2x-1}+\frac{6\left(x-\frac{1}{2}\right)}{\sqrt{3x+1}+\sqrt{\frac{5}{2}}}+\frac{2\left(x-\frac{1}{2}\right)\left(2x+1\right)}{x^2}-\frac{x-\frac{1}{2}}{\sqrt{x+2}+\sqrt{\frac{5}{2}}}=0\)

\(\Leftrightarrow\left(x-\frac{1}{2}\right)\left(\frac{2\left(2x-3\right)}{-x^2+2x-1}+\frac{6}{\sqrt{3x+1}+\sqrt{\frac{5}{2}}}+\frac{2\left(2x+1\right)}{x^2}-\frac{1}{\sqrt{x+2}+\sqrt{\frac{5}{2}}}\right)=0\)

Suy ra x=1/2

20 tháng 8 2017

96 đặt\(\sqrt{x+7}+\sqrt{6-x}=a\)

=>\(a^2-13=2\sqrt{-x^2-x+42}\)

xong cậu thay vào pt là đc

25 tháng 7 2015

ĐK: \(x\ge8\)

Đặt \(a=\sqrt[3]{x-1}\text{ (}a\ge\sqrt[3]{7}\text{)};\text{ }b=\sqrt{x-8}\text{ (}b\ge0\text{)}\Rightarrow x=b^2+8\)

\(a^3-b^2=x-1-\left(x-8\right)=7\text{ (*)}\)

\(pt\text{ thành }a^2-2a-\left(b^2+8-5\right)b-3\left(b^2+8\right)+31=0\)

\(\Leftrightarrow\left(a^2-2a\right)-\left(b^3+3b^2+3b\right)+7=0\)

\(\Leftrightarrow\left(a-1\right)^2-\left(b+1\right)^3+a^3-b^2=0\)

Đặt \(b+1=c\text{ (}c\ge1\text{)}\)

\(pt\text{ thành }a^3-c^3+\left(a-1\right)^2-\left(c-1\right)^2=0\)

\(\Leftrightarrow\left(a-c\right)\left(a^2+ac+c^2\right)+\left(a-c\right)\left(a+c-2\right)=0\)

\(\Leftrightarrow\left(a-c\right)\left[a^2+c^2+a+c+ac-2\right]=0\)

\(\Leftrightarrow a-c=0\text{ (do }a^2+c^2+a+c+ac-2>0\text{ với mọi }a\ge\sqrt[3]{7};c\ge1\text{)}\)

\(\Leftrightarrow a=c\Leftrightarrow a=b+1\)

Thay \(b=a-1\) vào \(\left(\text{*}\right)\)ta được

\(a^3-\left(a-1\right)^2=7\Leftrightarrow\left(a-2\right)\left(a^2+a+4\right)=0\)

\(\Leftrightarrow a-2=0\text{ hoặc }a^2+a+4=0\text{ (vô nghiệm)}\)

\(\Leftrightarrow a=2\)

\(\Rightarrow\sqrt[3]{x-1}=2\Leftrightarrow x=9\)

Kết luận: \(x=9\).

 

12 tháng 8 2017

câu 2 đề sai

12 tháng 8 2017

ok tớ sẽ giải nhunh ! sửa câu 2 đi rồi tớ sẽ làm cho bn !

câu 1 ) thì đúng

câu 2 sai đề

13 tháng 8 2019

1. \(\sqrt{\left(x+3\right)\left(x+7\right)}=3\sqrt{x+3}+2\sqrt{x+7}-6\)

\(\Leftrightarrow\sqrt{\left(x+3\right)\left(x+7\right)}-3\sqrt{x+3}-2\sqrt{x+7}+6=0\)

\(\Leftrightarrow\sqrt{x+3}\left(\sqrt{x+7}-3\right)-2\left(\sqrt{x+7}-3\right)=0\)

\(\Leftrightarrow\left(\sqrt{x+7}-3\right)\left(\sqrt{x+3}-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+7}-3=0\\\sqrt{x+3}-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+7}=3\\\sqrt{x+3}=2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=1\end{matrix}\right.\)

Vậy...

2. \(2x^2+2x+1=\sqrt{4x+1}\)

\(\Leftrightarrow2x^2+2x+1-\sqrt{4x+1}=0\)

\(\Leftrightarrow4x^2+4x+2-2\sqrt{4x+1}=0\)

\(\Leftrightarrow4x+1-2\sqrt{4x+1}+1+4x^2=0\)

\(\Leftrightarrow\left(\sqrt{4x+1}-1\right)^2+4x^2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{4x+1}=1\\2x=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}4x+1=1\\x=0\end{matrix}\right.\)\(\Leftrightarrow x=0\)

Vậy...

13 tháng 8 2019

3. \(\sqrt{x-2\sqrt{x-1}}+\sqrt{x+2\sqrt{x-1}}=\frac{x+3}{2}\)

\(\Leftrightarrow\sqrt{x-1-2\sqrt{x-1}+1}+\sqrt{x-1+2\sqrt{x-1}+1}=\frac{x+3}{2}\)

\(\Leftrightarrow\sqrt{\left(\sqrt{x-1}-1\right)^2}+\sqrt{\left(\sqrt{x-1}+1\right)^2}=\frac{x+3}{2}\)

\(\Leftrightarrow\left|\sqrt{x-1}-1\right|+\sqrt{x-1}+1=\frac{x+3}{2}\)

Đặt \(\sqrt{x-1}=a\)

\(\Leftrightarrow x-1=a^2\Leftrightarrow x+3=a^2+4\)

\(pt\Leftrightarrow\left|a-1\right|+a+1=\frac{a^2+4}{2}\)

+) Xét \(a\le1\Leftrightarrow a-1\le0\Leftrightarrow1\le x\le2\)

\(pt\Leftrightarrow1-a+a+1=\frac{a^2+4}{2}\)

\(\Leftrightarrow2=\frac{a^2+4}{2}\)

\(\Leftrightarrow a^2+4=4\)

\(\Leftrightarrow a=0\)

\(\Leftrightarrow\sqrt{x-1}=0\)

\(\Leftrightarrow x=1\) ( thỏa )

+) Xét \(a\ge1\Leftrightarrow a-1\ge0\Leftrightarrow x>2\)

\(pt\Leftrightarrow a-1+a+1=\frac{a^2+3}{2}\)

\(\Leftrightarrow2a=\frac{a^2+3}{2}\)

\(\Leftrightarrow a^2+3=4a\)

\(\Leftrightarrow a^2-4a+3=0\)

\(\Leftrightarrow\left(a-1\right)\left(a-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=1\\a=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\left(loai\right)\\x=10\left(thoa\right)\end{matrix}\right.\)

Vậy...