Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{x}+\sqrt{2015-y}=\sqrt{2015}\Leftrightarrow\left(\sqrt{x}+\sqrt{2015-y}\right)^2=2015\)
\(\Leftrightarrow x-y+2\sqrt{x}.\sqrt{2015-y}=0\Leftrightarrow4x.\left(2015-y\right)=\left(y-x\right)^2\)
\(\Leftrightarrow x^2+y^2-2xy=2015.4x-4xy\Leftrightarrow\left(x+y\right)^2=2015.4x\)
Tương tự : \(\sqrt{2015-x}+\sqrt{y}=\sqrt{2015}\Leftrightarrow\left(x+y\right)^2=2015.4y\)
Từ đó suy ra x = y
Tới đây bạn tự làm nhé :)
\(\sqrt{\left(x-2015\right)^{14}}+\sqrt{\left(x-2016\right)^{10}}=1
\)
\(\Leftrightarrow\left(x-2015\right)^7+\left(x-2016\right)^5=1\)
=> x=2015 hoặc x=2016
đoán thế
Đặt \(\sqrt{x-2013}=a\left(a>0\right)\)
\(\sqrt{y-2014}=b\left(b>0\right)\)
\(\sqrt{z-2015}=c\left(c>0\right)\)
Có \(\frac{a-1}{a^2}+\frac{b-1}{b^2}+\frac{c-1}{c^2}=\frac{3}{4}\)
<=> \(\frac{a-1}{a^2}-\frac{1}{4}+\frac{b-1}{b^2}-\frac{1}{4}+\frac{c-1}{c^2}-\frac{1}{4}=0\)
<=> \(\frac{4a-4-a^2}{4.a^2}+\frac{4b-4-b^2}{4b^2}+\frac{4c-4+c^2}{4c^2}=0\)
<=>\(\frac{-\left(a^2-4a+4\right)}{4a^2}-\frac{b^2-4b+4}{4b^2}-\frac{c^2-4c+4}{4c^2}=0\)
<=> \(\frac{\left(a-2\right)^2}{4a^2}+\frac{\left(b-2\right)^2}{4b^2}+\frac{\left(c-2\right)^2}{4c^2}=0\).
Có \(\frac{\left(a-2\right)^2}{4a^2}\ge0\forall a>0\)
\(\frac{\left(b-2\right)^2}{4b^2}\ge0\forall b>0\)
\(\frac{\left(c-2\right)^2}{4c^2}\ge0\forall c>0\)
=> \(\frac{\left(a-2\right)^2}{4a^2}+\frac{\left(b-2\right)^2}{4b^2}+\frac{\left(c-2\right)^2}{4c^2}\ge0\) với moi a,b,c >0
Dấu "=" xảy ra <=> \(\left\{{}\begin{matrix}a-2=0\\b-2=0\\c-2=0\end{matrix}\right.\) <=>\(\left\{{}\begin{matrix}a=2\\b=2\\c=2\end{matrix}\right.\)<=> \(\left\{{}\begin{matrix}\sqrt{x-2013}=2\\\sqrt{y-2014}=2\\\sqrt{z-2015}=2\end{matrix}\right.\)
<=> \(\left\{{}\begin{matrix}x-2013=4\\y-2014=4\\z-2015=4\end{matrix}\right.\) <=>\(\left\{{}\begin{matrix}x=2017\\y=2018\\z=2019\end{matrix}\right.\)(t/m)
Vậy \(\left(x,y,z\right)\in\left\{\left(2017,2018,2019\right)\right\}\)
ĐKXĐ : \(x\ge1\)
- Ta có : \(x^4+4x^2=2x-2015\sqrt{x-1}+2\)
=> \(x^4+4x^2-2x-2=-2015\sqrt{x-1}\)
=> \(\left(x^2\right)^2+4x^2+4-2x-6=-2015\sqrt{x-1}\)
=> \(\left(x^2+2\right)^2-2\left(x+3\right)=-2015\sqrt{x-1}\)
- Gỉa sử \(-2\left(x+3\right)=0\)
=> \(\left(x^2+2\right)^2=-2015\sqrt{x-1}\) ( vô lý )
- Gỉa sử \(-2\left(x+3\right)>0\)
Mà ta thấy \(\left(x^2+2\right)^2>0\)
=> \(\left(x^2+2\right)^2-2\left(x+3\right)>0\)
Mà \(-2015\sqrt{x-1}< 0\)
=> \(-2\left(x+3\right)>0\) ( vô lý )
- Gỉa sử \(-2\left(x+3\right)< 0\)
=> \(x>-3\)
Mà để phương trình được xác định thì \(x\ge1\)
Vậy hệ phương trình vô nghiệm .
c/ ĐKXĐ: \(x\ge3\)
\(\Leftrightarrow\sqrt{\left(x-1\right)\left(x-2\right)}+\sqrt{x-3}-\sqrt{x-2}-\sqrt{\left(x-1\right)\left(x+3\right)}=0\)
\(\Leftrightarrow\left(\sqrt{\left(x-1\right)\left(x-2\right)}-\sqrt{x-2}\right)-\left(\sqrt{\left(x-1\right)\left(x+3\right)}-\sqrt{x+3}\right)=0\)
\(\Leftrightarrow\sqrt{x-2}\left(\sqrt{x-1}-1\right)-\sqrt{x+3}\left(\sqrt{x-1}-1\right)=0\)
\(\Leftrightarrow\left(\sqrt{x-2}-\sqrt{x+3}\right)\left(\sqrt{x-1}-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-2}-\sqrt{x+3}=0\\\sqrt{x-1}-1=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-2}=\sqrt{x+3}\\\sqrt{x-1}=1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=x+3\left(vn\right)\\x=2< 3\left(ktm\right)\end{matrix}\right.\)
Vậy pt đã cho vô nghiệm