K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 4 2016

giải phương trình$\sqrt{x}+\sqrt{1-x}+2\sqrt{x-x^2}-2\sqrt[4]{x-x^2}=1$√x+√1−x+2√x−x2−24√x−x2=1$\sqrt{x^2+10x+7}=3\sqrt{x+3}+2\sqrt{x+7}-6$√x2+10x+7=3√x+3+2√x+7−6$\sqrt[3]{x+1}+\sqrt[3]{x+2}=1+\sqrt[3]{x-3x+12}$3√x+1+3√x+2=1+3√x−3x+12$\left(4x+2\right)\sqrt{x+8}=3x^2+7x+8$(4x+2)√x+8=3x2+7x+8$x+4\sqrt{5-x}=4\sqrt{x-1}+\sqrt{-x^2+6x-5}+1$x+ 

ải phương trình

$\sqrt{x}+\sqrt{1-x}+2\sqrt{x-x^2}-2\sqrt[4]{x-x^2}=1$x+1x+2xx224xx2=1

4√5−x=4√x−1+√−x2+6x−5+1

5 tháng 4 2020

\(b,\sqrt{8+\sqrt{x}}+\sqrt{5-\sqrt{x}}=5\) \(Đkxđ:0\le\sqrt{x}\le5\)

Phương trình trên tương đương với:

\(\sqrt{8+t}+\sqrt{5-t}=5\left(\sqrt{x}=t\right)\)

\(\Leftrightarrow13+2\sqrt{\left(8+t\right)\left(5-t\right)}=25\)

\(\Leftrightarrow\sqrt{40-3t-t^2}=6\)

\(\Leftrightarrow t^2+3t-4=0\)

\(\Leftrightarrow\left[{}\begin{matrix}t_1=1\\t_2=-4\left(ktm\right)\end{matrix}\right.\)

\(\Leftrightarrow x=1\)

Vậy ............

9 tháng 9 2017

a,\(x+4\sqrt{7-x}\) \(-4\sqrt{x-1}-\sqrt{\left(7-x\right)\left(x-1\right)}-1=0\) (dk \(1\le x\le7\) )

\(\Leftrightarrow\left(\sqrt{x-1}\right)^2+4\sqrt{7-x}-4\sqrt{x-1}-\sqrt{\left(7-x\right)\left(x-1\right)}=0\)

\(\Leftrightarrow\left(\sqrt{x-1}\right)\left(\sqrt{x-1}-4\right)+\left(\sqrt{7-x}\right)\left(4-\sqrt{x-1}\right)=0\)

\(\Leftrightarrow\left(\sqrt{x-1}-4\right)\left(\sqrt{x-1}-\sqrt{7-x}\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x-1}=4\\\sqrt{x-1}=\sqrt{7-x}\end{cases}\Leftrightarrow\orbr{\begin{cases}x=17\left(l\right)\\x=4\left(tm\right)\end{cases}}}\)

10 tháng 9 2017

mà sao bạn k làm giúp mình câu b

19 tháng 6 2017

a) \(\dfrac{1}{2+\sqrt{x}}+\dfrac{1}{2-\sqrt{x}}=4\) (1)

\(\Leftrightarrow\dfrac{1}{2+\sqrt{x}}+\dfrac{1}{2-\sqrt{x}}-4=0\)

\(\Leftrightarrow\dfrac{2-\sqrt{x}+2+\sqrt{x}-4\left(2+\sqrt{x}\right)\cdot\left(2-\sqrt{x}\right)}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}=0\)

\(\Leftrightarrow2-\sqrt{x}+2+\sqrt{x}-4\left(2+\sqrt{x}\right)\cdot\left(2-\sqrt{x}\right)=0\)

\(\Leftrightarrow2+2-4\left(4-x\right)=0\)

\(\Leftrightarrow2+2-16+4x=0\)

\(\Leftrightarrow-12+4x=0\)

\(\Leftrightarrow4x=12\)

\(\Leftrightarrow x=3\)

Vậy tập nghiệm phương trình (1) là \(S=\left\{3\right\}\)

b) \(\dfrac{8-\sqrt{x}}{\sqrt{x}-7}+\dfrac{1}{7-\sqrt{x}}=8\) (2)

\(\Leftrightarrow\dfrac{8-\sqrt{x}}{\sqrt{x}-7}+\dfrac{1}{7-\sqrt{x}}-8=0\)

\(\Leftrightarrow\dfrac{8-\sqrt{x}-1-8\left(\sqrt{x}-7\right)}{\sqrt{x}-7}=0\)

\(\Leftrightarrow8-\sqrt{x}-1-8\left(\sqrt{x}-7\right)=0\)

\(\Leftrightarrow8-\sqrt{x}-1-8\sqrt{x}+56=0\)

\(\Leftrightarrow63-9\sqrt{x}=0\)

\(\Leftrightarrow-9\sqrt{x}=-63\)

\(\Leftrightarrow\sqrt{x}=7\)

\(\Leftrightarrow x=49\)

sau khi thử lại ta nhận thấy: \(\dfrac{8-\sqrt{49}}{\sqrt{49}-8}+\dfrac{1}{7-\sqrt{49}}=8\)\(\Leftrightarrow\dfrac{1}{0}+\dfrac{1}{7-\sqrt{49}}=8\)

\(\Rightarrow x\ne48\)

\(\Rightarrow x\in\varnothing\)

19 tháng 6 2017

quên đk à?? (giống tớ rồi, t cũng hay quên đk)

#TAPN

10 tháng 6 2019

a)ĐKXĐ \(\orbr{\begin{cases}x\ge3+\sqrt{2}\\x\le3-\sqrt{2}\end{cases}}\)

Đặt \(\sqrt{x^2-6x+7}=a\ge0.\)\(\Rightarrow x^2-6x+7=a^2\Leftrightarrow x^2-6x=a^2-7\)

Ta có phương trình:

\(a^2-7+a=5\Leftrightarrow a^2+a-12=0\Leftrightarrow a^2-3a+4a-12=0\)

\(\Leftrightarrow a\left(a-3\right)+4\left(a-3\right)=0\Leftrightarrow\left(a-3\right)\left(a+4\right)=0\)

\(\Leftrightarrow a-3=0\)(Vì \(a\ge0\rightarrow a+4\ge4\))

\(\Leftrightarrow a=3\Leftrightarrow\sqrt{x^2-6x+7}=3\)

\(\Leftrightarrow x^2-6x+7=9\Leftrightarrow x^2-6x-2=0\)

Ta có \(\Delta^'=3^2-\left(-2\right)=11>0\)

\(\Rightarrow x_1=3-\sqrt{11}\)(TMĐK)

\(x_2=3+\sqrt{11}\)(TMĐK)

Kết luận vậy phương trình đã cho có 2 nghiệm phân biệt .............

b) ĐKXĐ: \(x\ge-1\)

Đặt \(\sqrt{x+1}=a\ge0;\sqrt{x+6}=b>0\)

\(\Rightarrow b^2-a^2=x+6-\left(x+1\right)=5\)

Ta có hệ phương trinh :\(\hept{\begin{cases}a+b=5\\b^2-a^2=5\end{cases}\Leftrightarrow}\hept{\begin{cases}\left(b-a\right)\left(b+a\right)=5\\a+b=5\end{cases}}\Leftrightarrow\hept{\begin{cases}b-a=1\\a+b=5\end{cases}\Leftrightarrow\hept{\begin{cases}a=2\\b=3\end{cases}}}\)(TMĐK)

\(\Leftrightarrow\hept{\begin{cases}\sqrt{x+1}=2\\\sqrt{x+6}=3\end{cases}\Leftrightarrow\hept{\begin{cases}x+1=4\\x+6=9\end{cases}\Leftrightarrow}}x=3\left(TMĐK\right).\)

Vậy phương trình đã cho có nghiệm duy nhất là ...

Chỗ đó bạn viết đề mình không biết vế phải bằng 5 hay 55 nữa

Nếu là 55 thì làm tương tự và chỗ hệ thay bằng \(\hept{\begin{cases}a+b=55\\b^2-a^2=5\end{cases}}\)Giải tương tự tìm được \(\hept{\begin{cases}a=\frac{302}{11}\\b=\frac{303}{11}\end{cases}\Leftrightarrow x=\frac{91083}{121}\left(TMĐK\right).}\)

c) ĐKXĐ \(x\ge1\)

 \(\sqrt{x+3-4\sqrt{x-1}}+\sqrt{x+8-6\sqrt{x-1}}=4\)

\(\Leftrightarrow\sqrt{x-1-2.\sqrt{x-1}.2+4}+\sqrt{x-1-2.\sqrt{x-1}.3+9}=4\)

\(\Leftrightarrow\sqrt{\left(\sqrt{x-1}-2\right)^2}+\sqrt{\left(\sqrt{x-1}-3\right)^2}=4\)

\(\Leftrightarrow|\sqrt{x-1}-2|+|\sqrt{x-1}-3|=4\)(3)

* Nếu \(\sqrt{x-1}< 2\)phương trình (3) tương đương với

\(2-\sqrt{x-1}+3-\sqrt{x-1}=4\Leftrightarrow2\sqrt{x-1}=1\)

\(\Leftrightarrow x-1=\frac{1}{4}\Leftrightarrow x=\frac{5}{4}\left(TMĐK\right)\)

* Nếu \(2\le\sqrt{x-1}\le3\)phương trình (3) tương đương với

\(\sqrt{x-1}-2+3-\sqrt{x-1}=4\Leftrightarrow1=4\left(loại\right)\)

* Nếu \(\sqrt{x-1}>3\)phương trình (3) tương đương với

\(\sqrt{x-1}-2+\sqrt{x-1}-3=4\)\(\Leftrightarrow2\sqrt{x-1}=9\Leftrightarrow\sqrt{x-1}=\frac{9}{2}\Leftrightarrow x-1=\frac{81}{4}\Leftrightarrow x=\frac{85}{4}\left(TMĐK\right)\)

Vậy phương trình đã cho có 2 nghiệm phân biệt .......

'

13 tháng 10 2019

a,đk -1<x<7

x+1+2 căn 7-x-2 căn x+1=căn (x+1)(7-x)

24 tháng 6 2017

a)\(\sqrt{\left(x-1\right)^2}+\sqrt{x^2+4x+4}=3\)

\(pt\Leftrightarrow\sqrt{\left(x-1\right)^2}+\sqrt{\left(x+2\right)^2}=3\)

\(\Leftrightarrow\left|x-1\right|+\left|x+2\right|=3\)

Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:

\(VT=\left|x-1\right|+\left|-\left(x+2\right)\right|=\left|x-1\right|+\left|-x-2\right|\)

\(\ge\left|x-1+\left(-x\right)-2\right|=3=VP\)

Đẳng thức xảy ra khi \(x=1\)