Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{9x^2-6x+5}=1-x^2\)
\(\Leftrightarrow9x^2-6x+5=\left(1-x^2\right)^2\)
\(\Leftrightarrow9x^2-6x+5=1-2x^2+x^4\)
\(\Leftrightarrow9x^2-6x+5-1+2x^2-x^4=0\)
\(\Leftrightarrow-x^4+11x^2-6x+4=0\)
\(\Leftrightarrow x^4-11x^2+6x-4=0\)
<=>\(\sqrt{9x^2-6x+5}=1-x^2\)
<=>\(\sqrt{\left(9x^2-6x+1\right)+4}=1-x^2\)
<=>\(\sqrt{\left(3x-1\right)^2+4}=1-x^2\)
<=> 3x - 1 + 2 = 1 - x2
<=> 3x + x2 = 1 +1 - 2
<=> x(3+x) = 0
<=> x = o hoặc 3+x =0 <=> x = -3
Vậy S= {0;-3}
Xét phương trình 1 ta có:
\(9x^3+2x+\left(y-1\right)\sqrt{1-3y}=0\)
\(\Leftrightarrow27x^3+6x+\left(3y-3\right)\sqrt{1-3y}=0\)
Đặt \(\hept{\begin{cases}3x=a\\\sqrt{1-3y}=b\end{cases}}\)
\(\Rightarrow a^3+2a-b^3-2b=0\)
\(\Leftrightarrow\left(a-b\right)\left(a^2+ab+b^2+2\right)=0\)
\(\Leftrightarrow a=b\)
Làm nốt
a) giải pt ra ta được : x=-1
b) giải pt ra ta được : x=2
c)giải pt ra ta được : x vô ngiệm
d)giải pt ra ta được : x=vô ngiệm
~~~~~~~~~~~ai đi ngang qua nhớ để lại k ~~~~~~~~~~~~~
~~~~~~~~~~~~ Chúc bạn sớm kiếm được nhiều điểm hỏi đáp ~~~~~~~~~~~~~~~~~~~
Đăng 1 lúc mà nhiều thế. Lần sau đăng 1 câu thôi b.
b/ \(\sqrt{x^2-4x+5}+\sqrt{x^2-4x+8}+\sqrt{x^2-4x+9}=3+\sqrt{5}\)
\(\Leftrightarrow\sqrt{\left(x-2\right)^2+1}+\sqrt{\left(x-2\right)^2+4}+\sqrt{\left(x-2\right)^2+5}=3+\sqrt{5}\)
Ta có: \(VT\ge1+2+\sqrt{5}=3+\sqrt{5}\)
Dấu = xảy ra khi \(x=2\)
c/ \(\sqrt{2-x^2+2x}+\sqrt{-x^2-6x-8}=\sqrt{3-\left(x-1\right)^2}+\sqrt{1-\left(x+3\right)^2}\)
\(\le1+\sqrt{3}\)
Dấu = không xảy ra nên pt vô nghiệm
Câu d làm tương tự
\(a,\sqrt{x^2-4}-x^2+4=0\)
\(\Leftrightarrow\sqrt{x^2-4}=x^2-4\)
\(\Leftrightarrow x^2-4=\left(x-4\right)^2\)
\(\Leftrightarrow x^2-4-x^4+8x^2-16=0\)
\(\Leftrightarrow-x^4-7x^2-20=0\)
\(\Leftrightarrow-\left(x^4+7x^2+\frac{49}{4}\right)-\frac{31}{4}=0\)
\(\Leftrightarrow-\left(x^2+\frac{7}{2}\right)^2=\frac{31}{4}\)
\(\Leftrightarrow\left(x^2+\frac{7}{2}\right)=-\frac{31}{4}\)
\(\Rightarrow\)pt vô nghiệm
ĐKXĐ: \(\frac{1}{3}\le x\le\frac{2}{3}\)
Đặt: \(\sqrt{6x-1}=a;\sqrt{9x^2-1}=b\)(a, b ≥0) ta có:
\(a+b=a^2-b^2\Rightarrow a+b=\left(a+b\right)\left(a-b\right)\)
⇒ \(\left(a+b\right)\left(a-b-1\right)=0\)
⇔ \(\left[{}\begin{matrix}a=-b\\a=b+1\end{matrix}\right.\)
✘Với \(a=-b\) thì \(a=b=0\) ⇔ Không tìm được x thỏa mãn
✔Với \(a=b+1\) ⇔ \(\sqrt{6x-1}=\sqrt{9x^2-1}+1\)
⇔ \(6x-1=9x^2+2\sqrt{9x^2-1}\)
⇔ \(\left(3x-1\right)^2=-2\sqrt{9x^2-1}\) (1)
Vế trái của (1) ≥ 0; Vế phải của (1) ≤ 0
⇔ Cả hai vế = 0. Dấu "=" xảy ra khi \(x=\frac{1}{3}\) (t/m ĐKXĐ)
Vậy \(x=\frac{1}{3}\)