Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\hept{\begin{cases}\sqrt[3]{x+2}=a\\\sqrt[3]{7-x}=b\end{cases}\Rightarrow}a^3+b^3=9\)
Ta được hệ phương trình \(\hept{\begin{cases}a-b=1\\a^3+b^3=9\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a=b+1\\\left(b+1\right)^3+b^3=9\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a=b+1\\2b^3+3b^2+3b-8=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a=2\\b=1\end{cases}}\)
Đến đây đơn giản rồi :P
Bài 2:
a)\(\sqrt{\left(1-x\right)^2}=x-1\)
\(\Leftrightarrow\left|1-x\right|=x-1\) dễ như bài lớp 6
b)\(\sqrt{1-x}+\sqrt{x+4}=3\)
\(\Leftrightarrow\sqrt{1-x}-\left(-\frac{1}{3}x+1\right)+\sqrt{x+4}-\left(\frac{1}{3}x+2\right)=3\)
\(\Leftrightarrow\frac{1-x-\left(-\frac{1}{3}x+1\right)^2}{\sqrt{1-x}+\left(-\frac{1}{3}x+1\right)}+\frac{x+4-\left(\frac{1}{3}x+2\right)^2}{\sqrt{x+4}+\frac{1}{3}x+2}=0\)
\(\Leftrightarrow\frac{-\left(x^2+3x\right)}{\sqrt{1-x}+\left(-\frac{1}{3}x+1\right)}+\frac{-\left(x^2+3x\right)}{\sqrt{x+4}+\frac{1}{3}x+2}=0\)
\(\Leftrightarrow-\left(x^2+3x\right)\left(\frac{1}{\sqrt{1-x}+\left(-\frac{1}{3}x+1\right)}+\frac{1}{\sqrt{x+4}+\frac{1}{3}x+2}\right)=0\)
\(\Leftrightarrow-x\left(x+3\right)\left(\frac{1}{\sqrt{1-x}+\left(-\frac{1}{3}x+1\right)}+\frac{1}{\sqrt{x+4}+\frac{1}{3}x+2}\right)=0\)
Pt to dài trong ngoặc >0
Suy râ x=0;x=-3
câu 1;2a dễ,tự làm đi
câu 2b:
\(\Leftrightarrow5+2\sqrt{4-3x-x^2}=9\)
\(\Leftrightarrow\sqrt{4-3x-x^2}=2\)
<=>3x-x2=0
cái 1 thêm đk nữa quên mất
2, bình phương 2 vế luôn ( có điều kiện nữa vào)
đc 2\(\sqrt{\left(1-x\right)\left(x+4\right)}\)=9-5=4
\(\sqrt{\left(1-x\right)\left(x+4\right)}\)=2
(1-x)(x+4)=4
=>x=0;-3
1 chuyển vế bình phương đc
3x+7=4+4*sqrt(x+1) + x+1
2x+2=4*sqrt(x+1)
x+1-2*sqrt(x+1)+1=1 (thêm +1 vào 2 vế)
(sqrt(x+1)-1)^2=1
chia 2 trường hợp 1 là sqrt(x+1)-1=1=>x=3
trường hớp 2 là sqrt(x+1)-1=-1=>x=-1
\(\sqrt[3]{x+7}+\sqrt[3]{x-1}=2\)
\(\Leftrightarrow\sqrt[3]{x+7}-2+\sqrt[3]{x-1}=0\)
\(\Leftrightarrow\frac{x-1}{\sqrt[3]{x+7}^2+2^2+2\sqrt[3]{x+7}}+\frac{x-1}{\sqrt[3]{\left(x-1\right)^2}}=0\)
\(\Leftrightarrow\left(x-1\right)\left(\frac{1}{\sqrt[3]{x+7}^2+2^2+2\sqrt[3]{x+7}}+\frac{1}{\sqrt[3]{\left(x-1\right)^2}}\right)=0\)
Dễ thấy: \(\frac{1}{\sqrt[3]{x+7}^2+2^2+2\sqrt[3]{x+7}}+\frac{1}{\sqrt[3]{\left(x-1\right)^2}}>0\)
\(\Leftrightarrow x=1\)
cái này nhân trên tử một lượng giống hệt mẫu là ra hằng đẳng thức e nhé
Cửa hàng đã bán hết 618kg bí đỏ và 619kg cà rốt. Bí đỏ có giá bán 10 nghìn đồng 1kg và cà rốt có giá bán là 9 nghìn đồng 1kg. Hỏi cửa hàng bán bí đỏ được bao nhiêu tiền và bán cà rốt được bao nhiêu tiền?
ĐKXĐ: \(x\ge0\)
Đặt \(\left\{{}\begin{matrix}\sqrt[3]{x+7}=b\\\sqrt{x}=a\ge0\end{matrix}\right.\) \(\Rightarrow b^3-a^2=7\)
Ta được hệ:
\(\left\{{}\begin{matrix}b=1+a\\b^3-a^2=7\end{matrix}\right.\)
Thế trên xuống dưới:
\(\left(1+a\right)^3-a^2=7\)
\(\Rightarrow a^3+2a^2+3a-6=0\)
\(\Leftrightarrow\left(a-1\right)\left(a^2+3a+6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=1\\a^2+3a+6=0\left(vô-nghiệm\right)\end{matrix}\right.\)
\(\Rightarrow x=1\)