K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 7 2018

\(\sqrt[3]{x+7}+\sqrt[3]{x-1}=2\)

\(\Leftrightarrow\sqrt[3]{x+7}-2+\sqrt[3]{x-1}=0\)

\(\Leftrightarrow\frac{x-1}{\sqrt[3]{x+7}^2+2^2+2\sqrt[3]{x+7}}+\frac{x-1}{\sqrt[3]{\left(x-1\right)^2}}=0\)

\(\Leftrightarrow\left(x-1\right)\left(\frac{1}{\sqrt[3]{x+7}^2+2^2+2\sqrt[3]{x+7}}+\frac{1}{\sqrt[3]{\left(x-1\right)^2}}\right)=0\)

Dễ thấy: \(\frac{1}{\sqrt[3]{x+7}^2+2^2+2\sqrt[3]{x+7}}+\frac{1}{\sqrt[3]{\left(x-1\right)^2}}>0\)

\(\Leftrightarrow x=1\)

20 tháng 8 2017

Bài 2:

a)\(\sqrt{\left(1-x\right)^2}=x-1\)

\(\Leftrightarrow\left|1-x\right|=x-1\) dễ như bài lớp 6

b)\(\sqrt{1-x}+\sqrt{x+4}=3\)

\(\Leftrightarrow\sqrt{1-x}-\left(-\frac{1}{3}x+1\right)+\sqrt{x+4}-\left(\frac{1}{3}x+2\right)=3\)

\(\Leftrightarrow\frac{1-x-\left(-\frac{1}{3}x+1\right)^2}{\sqrt{1-x}+\left(-\frac{1}{3}x+1\right)}+\frac{x+4-\left(\frac{1}{3}x+2\right)^2}{\sqrt{x+4}+\frac{1}{3}x+2}=0\)

\(\Leftrightarrow\frac{-\left(x^2+3x\right)}{\sqrt{1-x}+\left(-\frac{1}{3}x+1\right)}+\frac{-\left(x^2+3x\right)}{\sqrt{x+4}+\frac{1}{3}x+2}=0\)

\(\Leftrightarrow-\left(x^2+3x\right)\left(\frac{1}{\sqrt{1-x}+\left(-\frac{1}{3}x+1\right)}+\frac{1}{\sqrt{x+4}+\frac{1}{3}x+2}\right)=0\)

\(\Leftrightarrow-x\left(x+3\right)\left(\frac{1}{\sqrt{1-x}+\left(-\frac{1}{3}x+1\right)}+\frac{1}{\sqrt{x+4}+\frac{1}{3}x+2}\right)=0\)

Pt to dài trong ngoặc >0

Suy râ x=0;x=-3

câu 1;2a dễ,tự làm đi

câu 2b:

\(\Leftrightarrow5+2\sqrt{4-3x-x^2}=9\)

\(\Leftrightarrow\sqrt{4-3x-x^2}=2\)

<=>3x-x2=0

Đặt \(\hept{\begin{cases}\sqrt[3]{x+2}=a\\\sqrt[3]{7-x}=b\end{cases}\Rightarrow}a^3+b^3=9\)

Ta được hệ phương trình \(\hept{\begin{cases}a-b=1\\a^3+b^3=9\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}a=b+1\\\left(b+1\right)^3+b^3=9\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}a=b+1\\2b^3+3b^2+3b-8=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}a=2\\b=1\end{cases}}\)

Đến đây đơn giản rồi :P

11 tháng 3 2020

thank you very much

4 tháng 7 2019

1   ĐKXD \(x\ge1\)

.\(2x^2+5x-1=7\sqrt{\left(x-1\right)\left(x^2+x+1\right)}\)

Đặt \(\sqrt{x-1}=a;\sqrt{x^2+x+1}=b\left(a,b\ge0\right)\)

=> \(2b^2+3a^2=2x^2+5x-1\)

=> \(2b^2+3a^2-7ab=0\)

<=> \(\orbr{\begin{cases}a=2b\\a=\frac{1}{3}b\end{cases}}\)

\(a=2b\)

=> \(2\sqrt{x^2+x+1}=\sqrt{x-1}\)

=> \(4x^2+3x+5=0\)vô nghiệm

\(a=\frac{1}{3}b\)

=> \(\sqrt{x^2+x+1}=3\sqrt{x-1}\)

=> \(x^2-8x+10=0\)

<=> \(\orbr{\begin{cases}x=4+\sqrt{6}\left(tmĐK\right)\\x=4-\sqrt{6}\left(kotmĐK\right)\end{cases}}\)

Vậy \(x=4+\sqrt{6}\)

4 tháng 7 2019

ĐKXĐ:\(2x^2-1\ge0;x^2-3x-2\ge0;2x^2+2x+3\ge0;x^2-x+2\ge0\)

\(\sqrt{2x^2-1}+\sqrt{x^2-3x-2}=\sqrt{2x^2+2x+3}+\sqrt{x^2-x+2}\)

<=> \(\left(\sqrt{2x^2+2x+3}-\sqrt{2x^2-1}\right)+\left(\sqrt{x^2-x+2}-\sqrt{x^2-3x-2}\right)=0\)

 \(\Leftrightarrow\frac{2x+4}{\sqrt{2x^2+2x+3}+\sqrt{2x^2-1}}+\frac{2x+4}{\sqrt{x^2-x+2}+\sqrt{x^2-3x-2}}=0\)

<=> \(\left(2x+4\right)\left(\frac{1}{\sqrt{2x^2+2x+3}+\sqrt{2x^2-1}}+\frac{1}{\sqrt{x^2-x+2}+\sqrt{x^2-3x-2}}\right)=0\)(1)

Vì \(\frac{1}{\sqrt{2x^2+2x+3}+\sqrt{2x^2-1}}+\frac{1}{\sqrt{x^2-x+2}+\sqrt{x^2-3x-2}}>0\)

nên pt(1) <=> \(2x+4=0\Leftrightarrow x=-2\)(tmđk)

Vậy x=-2

Em kiểm tra lại đề bài câu trên nhé

31 tháng 10 2016

Bài 1:

Đặt \(\hept{\begin{cases}S=x+y\\P=xy\end{cases}}\) hpt thành:

\(\hept{\begin{cases}S^2-P=3\\S+P=9\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}S^2-P=3\\S=9-P\end{cases}}\Leftrightarrow\left(9-P\right)^2-P=3\)

\(\Leftrightarrow\orbr{\begin{cases}P=6\Rightarrow S=3\\P=13\Rightarrow S=-4\end{cases}}\).Thay 2 trường hợp S và P vào ta tìm dc

\(\hept{\begin{cases}x=3\\y=0\end{cases}}\)\(\hept{\begin{cases}x=0\\y=3\end{cases}}\)

1 tháng 11 2016

Câu 3: ĐK: \(x\ge0\)

Ta thấy \(x-\sqrt{x-1}=0\Rightarrow x=\sqrt{x-1}\Rightarrow x^2-x+1=0\) (Vô lý), vì thế \(x-\sqrt{x-1}\ne0.\)

Khi đó \(pt\Leftrightarrow\frac{3\left[x^2-\left(x-1\right)\right]}{x+\sqrt{x-1}}=x+\sqrt{x-1}\Rightarrow3\left(x-\sqrt{x-1}\right)=x+\sqrt{x-1}\)

\(\Rightarrow2x-4\sqrt{x-1}=0\)

Đặt \(\sqrt{x-1}=t\Rightarrow x=t^2+1\Rightarrow2\left(t^2+1\right)-4t=0\Rightarrow t=1\Rightarrow x=2\left(tm\right)\)

12 tháng 12 2016

cái 1 thêm đk nữa quên mất

2, bình phương 2 vế luôn ( có điều kiện nữa vào)

đc 2\(\sqrt{\left(1-x\right)\left(x+4\right)}\)=9-5=4

\(\sqrt{\left(1-x\right)\left(x+4\right)}\)=2

(1-x)(x+4)=4

=>x=0;-3

12 tháng 12 2016

1 chuyển vế bình phương đc

3x+7=4+4*sqrt(x+1) + x+1

2x+2=4*sqrt(x+1)

x+1-2*sqrt(x+1)+1=1 (thêm +1 vào 2 vế)

(sqrt(x+1)-1)^2=1

chia 2 trường hợp 1 là sqrt(x+1)-1=1=>x=3

          trường hớp 2 là  sqrt(x+1)-1=-1=>x=-1

31 tháng 8 2017

a/ \(\sqrt[3]{x+1}+\sqrt[3]{7-x}=2\)

Đặt \(\hept{\begin{cases}\sqrt[3]{x+1}=a\\\sqrt[3]{7-x}=b\end{cases}}\) thì ta có hệ

\(\hept{\begin{cases}a+b=2\\a^3+b^3=8\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}a=2-b\left(1\right)\\\left(2-b\right)^3+b^3=8\left(2\right)\end{cases}}\)

\(\Rightarrow\left(2\right)\Leftrightarrow b^2-2b=0\)

\(\Leftrightarrow\orbr{\begin{cases}b=0\\b=2\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}a=2\\a=0\end{cases}}\)

Làm nốt nhé. Bài còn lại tương tự

31 tháng 8 2017

cám ơn bạn