K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
23 tháng 12 2020

Lời giải: Đặt \(\sqrt[3]{x+1}=a; \sqrt[3]{7-x}=b\). Khi đó ta có: \(\left\{\begin{matrix} a^3+b^3=8\\ a+b=2\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} (a+b)^3-3ab(a+b)=8\\ a+b=2\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} 8-6ab=8\\ a+b=2\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} ab=0\\ a+b=2\end{matrix}\right.\)

\(\Rightarrow (a,b)=(2,0); (0,2)\)

\(\Rightarrow x=7\) hoặc \(x=-1\)

 

20 tháng 8 2017

Bài 2:

a)\(\sqrt{\left(1-x\right)^2}=x-1\)

\(\Leftrightarrow\left|1-x\right|=x-1\) dễ như bài lớp 6

b)\(\sqrt{1-x}+\sqrt{x+4}=3\)

\(\Leftrightarrow\sqrt{1-x}-\left(-\frac{1}{3}x+1\right)+\sqrt{x+4}-\left(\frac{1}{3}x+2\right)=3\)

\(\Leftrightarrow\frac{1-x-\left(-\frac{1}{3}x+1\right)^2}{\sqrt{1-x}+\left(-\frac{1}{3}x+1\right)}+\frac{x+4-\left(\frac{1}{3}x+2\right)^2}{\sqrt{x+4}+\frac{1}{3}x+2}=0\)

\(\Leftrightarrow\frac{-\left(x^2+3x\right)}{\sqrt{1-x}+\left(-\frac{1}{3}x+1\right)}+\frac{-\left(x^2+3x\right)}{\sqrt{x+4}+\frac{1}{3}x+2}=0\)

\(\Leftrightarrow-\left(x^2+3x\right)\left(\frac{1}{\sqrt{1-x}+\left(-\frac{1}{3}x+1\right)}+\frac{1}{\sqrt{x+4}+\frac{1}{3}x+2}\right)=0\)

\(\Leftrightarrow-x\left(x+3\right)\left(\frac{1}{\sqrt{1-x}+\left(-\frac{1}{3}x+1\right)}+\frac{1}{\sqrt{x+4}+\frac{1}{3}x+2}\right)=0\)

Pt to dài trong ngoặc >0

Suy râ x=0;x=-3

câu 1;2a dễ,tự làm đi

câu 2b:

\(\Leftrightarrow5+2\sqrt{4-3x-x^2}=9\)

\(\Leftrightarrow\sqrt{4-3x-x^2}=2\)

<=>3x-x2=0

31 tháng 10 2016

Bài 1:

Đặt \(\hept{\begin{cases}S=x+y\\P=xy\end{cases}}\) hpt thành:

\(\hept{\begin{cases}S^2-P=3\\S+P=9\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}S^2-P=3\\S=9-P\end{cases}}\Leftrightarrow\left(9-P\right)^2-P=3\)

\(\Leftrightarrow\orbr{\begin{cases}P=6\Rightarrow S=3\\P=13\Rightarrow S=-4\end{cases}}\).Thay 2 trường hợp S và P vào ta tìm dc

\(\hept{\begin{cases}x=3\\y=0\end{cases}}\)\(\hept{\begin{cases}x=0\\y=3\end{cases}}\)

1 tháng 11 2016

Câu 3: ĐK: \(x\ge0\)

Ta thấy \(x-\sqrt{x-1}=0\Rightarrow x=\sqrt{x-1}\Rightarrow x^2-x+1=0\) (Vô lý), vì thế \(x-\sqrt{x-1}\ne0.\)

Khi đó \(pt\Leftrightarrow\frac{3\left[x^2-\left(x-1\right)\right]}{x+\sqrt{x-1}}=x+\sqrt{x-1}\Rightarrow3\left(x-\sqrt{x-1}\right)=x+\sqrt{x-1}\)

\(\Rightarrow2x-4\sqrt{x-1}=0\)

Đặt \(\sqrt{x-1}=t\Rightarrow x=t^2+1\Rightarrow2\left(t^2+1\right)-4t=0\Rightarrow t=1\Rightarrow x=2\left(tm\right)\)

Đặt \(\hept{\begin{cases}\sqrt[3]{x+2}=a\\\sqrt[3]{7-x}=b\end{cases}\Rightarrow}a^3+b^3=9\)

Ta được hệ phương trình \(\hept{\begin{cases}a-b=1\\a^3+b^3=9\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}a=b+1\\\left(b+1\right)^3+b^3=9\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}a=b+1\\2b^3+3b^2+3b-8=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}a=2\\b=1\end{cases}}\)

Đến đây đơn giản rồi :P

11 tháng 3 2020

thank you very much

19 tháng 7 2018

\(\sqrt[3]{x+7}+\sqrt[3]{x-1}=2\)

\(\Leftrightarrow\sqrt[3]{x+7}-2+\sqrt[3]{x-1}=0\)

\(\Leftrightarrow\frac{x-1}{\sqrt[3]{x+7}^2+2^2+2\sqrt[3]{x+7}}+\frac{x-1}{\sqrt[3]{\left(x-1\right)^2}}=0\)

\(\Leftrightarrow\left(x-1\right)\left(\frac{1}{\sqrt[3]{x+7}^2+2^2+2\sqrt[3]{x+7}}+\frac{1}{\sqrt[3]{\left(x-1\right)^2}}\right)=0\)

Dễ thấy: \(\frac{1}{\sqrt[3]{x+7}^2+2^2+2\sqrt[3]{x+7}}+\frac{1}{\sqrt[3]{\left(x-1\right)^2}}>0\)

\(\Leftrightarrow x=1\)

4 tháng 7 2019

1   ĐKXD \(x\ge1\)

.\(2x^2+5x-1=7\sqrt{\left(x-1\right)\left(x^2+x+1\right)}\)

Đặt \(\sqrt{x-1}=a;\sqrt{x^2+x+1}=b\left(a,b\ge0\right)\)

=> \(2b^2+3a^2=2x^2+5x-1\)

=> \(2b^2+3a^2-7ab=0\)

<=> \(\orbr{\begin{cases}a=2b\\a=\frac{1}{3}b\end{cases}}\)

\(a=2b\)

=> \(2\sqrt{x^2+x+1}=\sqrt{x-1}\)

=> \(4x^2+3x+5=0\)vô nghiệm

\(a=\frac{1}{3}b\)

=> \(\sqrt{x^2+x+1}=3\sqrt{x-1}\)

=> \(x^2-8x+10=0\)

<=> \(\orbr{\begin{cases}x=4+\sqrt{6}\left(tmĐK\right)\\x=4-\sqrt{6}\left(kotmĐK\right)\end{cases}}\)

Vậy \(x=4+\sqrt{6}\)

4 tháng 7 2019

ĐKXĐ:\(2x^2-1\ge0;x^2-3x-2\ge0;2x^2+2x+3\ge0;x^2-x+2\ge0\)

\(\sqrt{2x^2-1}+\sqrt{x^2-3x-2}=\sqrt{2x^2+2x+3}+\sqrt{x^2-x+2}\)

<=> \(\left(\sqrt{2x^2+2x+3}-\sqrt{2x^2-1}\right)+\left(\sqrt{x^2-x+2}-\sqrt{x^2-3x-2}\right)=0\)

 \(\Leftrightarrow\frac{2x+4}{\sqrt{2x^2+2x+3}+\sqrt{2x^2-1}}+\frac{2x+4}{\sqrt{x^2-x+2}+\sqrt{x^2-3x-2}}=0\)

<=> \(\left(2x+4\right)\left(\frac{1}{\sqrt{2x^2+2x+3}+\sqrt{2x^2-1}}+\frac{1}{\sqrt{x^2-x+2}+\sqrt{x^2-3x-2}}\right)=0\)(1)

Vì \(\frac{1}{\sqrt{2x^2+2x+3}+\sqrt{2x^2-1}}+\frac{1}{\sqrt{x^2-x+2}+\sqrt{x^2-3x-2}}>0\)

nên pt(1) <=> \(2x+4=0\Leftrightarrow x=-2\)(tmđk)

Vậy x=-2

Em kiểm tra lại đề bài câu trên nhé

31 tháng 8 2017

a/ \(\sqrt[3]{x+1}+\sqrt[3]{7-x}=2\)

Đặt \(\hept{\begin{cases}\sqrt[3]{x+1}=a\\\sqrt[3]{7-x}=b\end{cases}}\) thì ta có hệ

\(\hept{\begin{cases}a+b=2\\a^3+b^3=8\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}a=2-b\left(1\right)\\\left(2-b\right)^3+b^3=8\left(2\right)\end{cases}}\)

\(\Rightarrow\left(2\right)\Leftrightarrow b^2-2b=0\)

\(\Leftrightarrow\orbr{\begin{cases}b=0\\b=2\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}a=2\\a=0\end{cases}}\)

Làm nốt nhé. Bài còn lại tương tự

31 tháng 8 2017

cám ơn bạn

12 tháng 12 2016

cái 1 thêm đk nữa quên mất

2, bình phương 2 vế luôn ( có điều kiện nữa vào)

đc 2\(\sqrt{\left(1-x\right)\left(x+4\right)}\)=9-5=4

\(\sqrt{\left(1-x\right)\left(x+4\right)}\)=2

(1-x)(x+4)=4

=>x=0;-3

12 tháng 12 2016

1 chuyển vế bình phương đc

3x+7=4+4*sqrt(x+1) + x+1

2x+2=4*sqrt(x+1)

x+1-2*sqrt(x+1)+1=1 (thêm +1 vào 2 vế)

(sqrt(x+1)-1)^2=1

chia 2 trường hợp 1 là sqrt(x+1)-1=1=>x=3

          trường hớp 2 là  sqrt(x+1)-1=-1=>x=-1