Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Anh ko ghi lại đề nha em gái !
\(\Leftrightarrow\frac{\left(\frac{10x-4+5x}{5}\right)}{15}=\frac{\left(\frac{14x-x+3}{2}\right).x}{5}+1\)
\(\Leftrightarrow\frac{\left(\frac{15x-4}{5}\right)}{15}=\frac{\left(\frac{13x^2+3x}{2}\right)}{5}+1\)
\(\Leftrightarrow\frac{\left(\frac{15x-4}{5}\right)}{15}=\frac{\left(\frac{39x^2+9x}{2}\right)+15}{15}\)
\(\Leftrightarrow\frac{15x-4}{5}=\frac{39x^2+9x+30}{2}\)
\(\Leftrightarrow2.\left(15x-4\right)=5.\left(39x^2+9x+30\right)\)
\(\Leftrightarrow30x-8=195x^2+45x+150\)
\(\Leftrightarrow-195x^2-15x-158=0\)
\(\left(a=-195;b=-15;c=-158\right)\)
\(\Delta=b^2-4ac\)
\(=\left(-15\right)^2-4.\left(-195\right).\left(-158\right)=-123015< 0\)
Vì \(\Delta< 0\) nên phương trình vô nghiệm.
Nếu có gì thắc mắc về bài này cứ hỏi anh !
\(\Leftrightarrow\frac{5\left(x+5\right)-3\left(x-3\right)}{15}=\frac{5\left(x+5\right)-3\left(x-3\right)}{\left(x-3\right)\left(x+5\right)}\)
\(\Leftrightarrow\frac{2x+34}{15}=\frac{2x+34}{x^2+2x-15}\Leftrightarrow\orbr{\begin{cases}2x+34=0\\x^2+2x-15=15\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-17\\x^2+2x-30=0\end{cases}}\)
Từ đó tìm được \(S=\left\{-17;\sqrt{31}-1;-\sqrt{31}-1\right\}\)
d) x+1/2019 + x+3/2017 = x+5/2015 + x+7/2013
<=> x+1/2019 + x+3/2017 - x+5/2015 - x+7/2013 =0
<=> ( x+1/2019 + 1) + ( x+3/2017 + 1) - ( x+5/2015 + 1) - ( x+7/2013 +1) = 0
<=> ( x+1+2019/2019) +(x+3+2017/2017) - ( x+5+2015/2015) - ( x+7+2013/2013) =0
<=> x+2020/2019 + x+2020/2017 - x+2020/2015 - x+2020/2013 =0
<=> (x+2020)× ( 1/2019 + 1/2017 - 1/2015 - 1/2013) =0
Mà 1/2019 + 1/2017 - 1/2015 - 1/2013 khác 0
=> x+2020 =0
=> x = -2020
\(\left(x-1\right)=\left(x-1\right)\left(x-2\right)\)
\(\Leftrightarrow\left(x-1\right)-\left(x-1\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-2-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-3\right)=0\)
HOẶC\(x-1=0\Leftrightarrow x=1\)(NHẬN)
HOẶC\(x-3=0\Leftrightarrow x=3\)(NHẬN)
VẬY: tập ngiệm của pt là S={1;3}
còn đây là câu b
\(\frac{3x-2-30}{6}=\frac{3-2x-14}{4}\)
\(\Leftrightarrow\frac{3x-32}{6}-\frac{-11-2x}{4}=0\)
\(\Leftrightarrow\frac{6x-64+33+6x}{12}\)
\(\Leftrightarrow12x=31\)
\(\Leftrightarrow x=\frac{31}{12}\)
\(ĐKXĐ:x\ne2;x\ne4\)
\(\frac{x-3}{x-2}+\frac{x-2}{x-4}=-1\)
\(\Leftrightarrow\frac{\left(x-3\right)\left(x-4\right)+\left(x-2\right)^2}{\left(x-2\right)\left(x-4\right)}=-1\)
\(\Leftrightarrow\frac{x^2-7x+12+x^2-4x+4}{x^2-6x+8}=-1\)
\(\Leftrightarrow2x^2-11x+16=-x^2+6x-8\)
\(\Leftrightarrow3x^2-17x+24=0\)
\(\Leftrightarrow\left(x-3\right)\left(3x-8\right)=0\)
\(\Leftrightarrow x=3;x=\frac{8}{3}\)
Vậy tập nghiệm của phương trình là \(S=\left\{3;\frac{8}{3}\right\}\)
\(\frac{1}{x-1}+\frac{2x^2-5}{x^3-1}=\frac{4}{x^2+x+1}\left(x\ne1\right)\)
\(\Leftrightarrow\frac{1}{x-1}+\frac{2x^2-5}{\left(x-1\right)\left(x^2+x+1\right)}-\frac{4}{x^2+x+1}=0\)
\(\Leftrightarrow\frac{x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}+\frac{2x^2-5}{\left(x-1\right)\left(x^2+x+1\right)}-\frac{4x-4}{\left(x-1\right)\left(x^2+x+1\right)}=0\)
\(\Leftrightarrow\frac{x^2+x+1+2x^2-5-4x+4}{\left(x-1\right)\left(x^2+x+1\right)}=0\)
\(\Leftrightarrow\frac{3x^2-3x}{\left(x-1\right)\left(x^2+x+1\right)}=0\)
\(\Leftrightarrow\frac{3x\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}=0\)
\(\Rightarrow3x=0\)
=> x=0 (tmđk)
Vậy x=0
a) \(\frac{x-1}{2}+\frac{x-2}{3}+\frac{x-3}{4}=\frac{x-4}{5}+\frac{x-5}{6}\)
\(\left(\frac{x-1}{2}+1\right)+\left(\frac{x-2}{3}+3\right)+\left(\frac{x-3}{4}+1\right)=\left(\frac{x-4}{5}+1\right)+\left(\frac{x-5}{6}+1\right)\)
\(\frac{x-1}{2}+\frac{x-1}{3}+\frac{x-1}{4}=\frac{x-1}{5}+\frac{x-1}{6}\)
\(\left(x-1\right)\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}\right)\)=0
\(x-1=0\)
\(x=1\)