Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
\(\Leftrightarrow sin^2x\left(sinx+1\right)-2\left(1-cosx\right)=0\)
\(\Leftrightarrow\left(1-cos^2x\right)\left(sinx+1\right)-2\left(1-cosx\right)=0\)
\(\Leftrightarrow\left(1-cosx\right)\left(1+cosx\right)\left(sinx+1\right)-2\left(1-cosx\right)=0\)
\(\Leftrightarrow\left(1-cosx\right)\left(sinx+cosx+sinx.cosx-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cosx=1\Leftrightarrow...\\sinx+cosx+sinx.cosx-1=0\left(1\right)\end{matrix}\right.\)
Xét (1):
Đặt \(sinx+cosx=t\Rightarrow\left[{}\begin{matrix}\left|t\right|\le\sqrt{2}\\sinx.cosx=\frac{t^2-1}{2}\end{matrix}\right.\)
\(\Leftrightarrow t+\frac{t^2-1}{2}-1=0\)
\(\Leftrightarrow t^2+2t-3=0\Rightarrow\left[{}\begin{matrix}t=1\\t=-3\left(l\right)\end{matrix}\right.\)
\(\Leftrightarrow sin\left(x+\frac{\pi}{4}\right)=\frac{\sqrt{2}}{2}\)
\(\Leftrightarrow...\)
2.
\(\Leftrightarrow\sqrt{3}sinx.cosx+\sqrt{2}cos^2x+\sqrt{6}cosx=0\)
\(\Leftrightarrow cosx\left(\sqrt{3}sinx+\sqrt{2}cosx+\sqrt{6}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cosx=0\Leftrightarrow...\\\sqrt{3}sinx+\sqrt{2}cosx=-\sqrt{6}\left(1\right)\end{matrix}\right.\)
Xét (1):
Do \(\sqrt{3}^2+\sqrt{2}^2< \left(-\sqrt{6}\right)^2\) nên (1) vô nghiệm
a) Ta có : \(sin\left(x-\frac{2\pi}{3}\right)=cos2x\)
\(\Leftrightarrow sin\left(x-\frac{2\pi}{3}\right)=sin\left(\frac{\pi}{2}-2x\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}x-\frac{2\pi}{3}=\frac{\pi}{2}-2x+k2\pi\\x-\frac{2\pi}{3}=\pi-\frac{\pi}{2}+2x+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{7\pi}{18}+k\frac{2\pi}{3}\\x=-\frac{7\pi}{6}-k2\pi\end{matrix}\right.\)
Vậy ...
Câu g đề thiếu
Câu 2:
\(sin\left(2x+\frac{\pi}{6}\right)=\frac{2}{5}\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+\frac{\pi}{6}=arcsin\left(\frac{2}{5}\right)+k2\pi\\2x+\frac{\pi}{6}=\pi-arcsin\left(\frac{2}{5}\right)+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{\pi}{12}+\frac{1}{2}arcsin\left(\frac{2}{5}\right)+k\pi\\x=\frac{5\pi}{12}-\frac{1}{2}arcsin\left(\frac{2}{5}\right)+k\pi\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x\approx-0,056\left(rad\right)\\x\approx1,1\left(rad\right)\end{matrix}\right.\)
a/ Hmm, bạn có nhầm lẫn chỗ nào ko nhỉ, nghiệm của pt này xấu khủng khiếp
b/ \(\Leftrightarrow sin\frac{5x}{2}-cos\frac{5x}{2}-sin\frac{x}{2}-cos\frac{x}{2}=cos\frac{3x}{2}\)
\(\Leftrightarrow2cos\frac{3x}{2}.sinx-2cos\frac{3x}{2}cosx=cos\frac{3x}{2}\)
\(\Leftrightarrow cos\frac{3x}{2}\left(2sinx-2cosx-1\right)=0\)
\(\Leftrightarrow cos\frac{3x}{2}\left(\sqrt{2}sin\left(x-\frac{\pi}{4}\right)-1\right)=0\)
c/ Do \(cosx\ne0\), chia 2 vế cho cosx ta được:
\(3\sqrt{tanx+1}\left(tanx+2\right)=5\left(tanx+3\right)\)
Đặt \(\sqrt{tanx+1}=t\ge0\)
\(\Leftrightarrow3t\left(t^2+1\right)=5\left(t^2+2\right)\)
\(\Leftrightarrow3t^3-5t^2+3t-10=0\)
\(\Leftrightarrow\left(t-2\right)\left(3t^2+t+5\right)=0\)
d/ \(\Leftrightarrow\sqrt{2}\left(\frac{1}{2}sinx+\frac{\sqrt{3}}{2}cosx\right)=\frac{\sqrt{3}}{2}cos2x-\frac{1}{2}sin2x\)
\(\Leftrightarrow\sqrt{2}sin\left(x+\frac{\pi}{3}\right)=-sin\left(2x-\frac{\pi}{3}\right)\)
Đặt \(x+\frac{\pi}{3}=a\Rightarrow2x=2a-\frac{2\pi}{3}\Rightarrow2x-\frac{\pi}{3}=2a-\pi\)
\(\sqrt{2}sina=-sin\left(2a-\pi\right)=sin2a=2sina.cosa\)
\(\Leftrightarrow\sqrt{2}sina\left(\sqrt{2}cosa-1\right)=0\)
3.
ĐKXĐ; ..
\(\sqrt{3}tanx+\frac{1}{tanx}-\sqrt{3}-1=0\)
\(\Leftrightarrow\sqrt{3}tan^2x-\left(\sqrt{3}+1\right)tanx+1=0\)
\(\Leftrightarrow\left[{}\begin{matrix}tanx=1\\tanx=\frac{1}{\sqrt{3}}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+k\pi\\x=\frac{\pi}{6}+k\pi\end{matrix}\right.\)
4.
\(\Leftrightarrow2cos^2x-1-3cosx=2+2cosx\)
\(\Leftrightarrow2cos^2x-5cosx-3=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cosx=-\frac{1}{2}\\cosx=3>1\left(l\right)\end{matrix}\right.\)
\(\Rightarrow x=\pm\frac{2\pi}{3}+k2\pi\)
1.
\(\Leftrightarrow3\left(2cos^22x-1\right)-\left(1-cos^22x\right)+cos2x-2=0\)
\(\Leftrightarrow7cos^22x+cos2x-6=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cos2x=-1\\cos2x=\frac{6}{7}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+k\pi\\x=\pm\frac{1}{2}arccos\left(\frac{6}{7}\right)+k\pi\end{matrix}\right.\)
2.
ĐKXĐ: ...
\(\Leftrightarrow1+cot^2x+3cotx+1=0\)
\(\Leftrightarrow cot^2x+3cotx+2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cotx=-1\\cotx=-2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{\pi}{4}+k\pi\\x=arccot\left(-2\right)+k\pi\end{matrix}\right.\)
\(\sin^2x+\dfrac{3}{2}\cos2x + 5 = 0\)
\(\Leftrightarrow \sin^2x+\dfrac{3}{2}(1-2\sin^2x) + 5 = 0\)
\(\Leftrightarrow \sin^2x=\dfrac{13}{4}\)
Suy ra PT vô nghiệm.
Cách khác chi tiết hơn
Ta đã biết \(\cos 2x = \cos^2 x -\sin^2 x = (1-\sin^2 x)-\sin^2 x = 1-2\sin^2 x\)
Vì vậy \(y = \sin^2 x +(1.5)(1-2\sin^2 x) + 5\)
\(\Rightarrow y = -2\sin^2 x + 6.5\). Bây giờ, khi \(\sin x\in [-1,1]\),\(\sin^2 x \in [0,1]\),vậy \(y \in[ 6,5;7,5]\)
Ta dễ dàng thấy \(y=0\) ko trong khoảng, vậy \(y=0\) ko phải là nghiệm cho \(x\)