Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{2x+1}{4}\)-\(\frac{y-2}{3}\)=\(\frac{1}{12}\)
=\(\frac{3.\left[2x+1\right]}{12}\)-\(\frac{4.\left[y-2\right]}{12}\)=\(\frac{1}{12}\)
=6x+3-4y-6=1
=6x-3-4y=1
=6x-4y=4
=2[3x-2y]=4
MK MỚI HỌC LỚP 8 ,CHÚA SẼ CHUYỂN HỆ PHƯƠNG TRÌNH CUỐI CÙNG ,BẠN GIẢI NỐT NHA
Ta có: \(\hept{\begin{cases}\left(\frac{1}{x}+y\right)+\left(\frac{1}{x}-y\right)=\frac{5}{8}\\\left(\frac{1}{x}+y\right)-\left(\frac{1}{x}-y\right)=-\frac{3}{8}\end{cases}\Leftrightarrow\hept{\begin{cases}\frac{2}{x}=\frac{5}{8}\\2y=-\frac{3}{8}\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{16}{5}\\y=-\frac{3}{16}\end{cases}}}\)
a: Ta có: \(2x+3>1-x\)
\(\Leftrightarrow3x>-2\)
hay \(x>-\dfrac{2}{3}\)
b: Ta có: \(15-2\left(x-3\right)< -2x+5\)
\(\Leftrightarrow15-2x+6+2x-5< 0\)
\(\Leftrightarrow16< 0\left(vôlý\right)\)
c: Ta có: \(\left(x+1\right)\left(x-3\right)\le\left(x+4\right)\left(x-1\right)\)
\(\Leftrightarrow x^2-3x+x-3-x^2+x-4x+4\le0\)
\(\Leftrightarrow-5x\le-1\)
hay \(x\ge\dfrac{1}{5}\)
d: Ta có: \(\dfrac{2x+1}{3}-\dfrac{1-x}{2}\ge1-\dfrac{x}{4}\)
\(\Leftrightarrow8x+4-6+6x\ge12-3x\)
\(\Leftrightarrow14x+3x\ge12+2=14\)
\(\Leftrightarrow x\ge\dfrac{14}{17}\)
e: Ta có: \(\dfrac{x+1}{2}-\dfrac{2-x}{3}< \dfrac{2x-3}{4}\)
\(\Leftrightarrow6x+12+4x-8< 6x-9\)
\(\Leftrightarrow4x< -9+8-12=-13\)
hay \(x< -\dfrac{13}{4}\)
f: Ta có: \(\left(x+1\right)\left(x-2\right)-\left(2-x\right)\left(3-x\right)>0\)
\(\Leftrightarrow x^2-2x+x-2-\left(x-2\right)\left(x-3\right)>0\)
\(\Leftrightarrow x^2-x-2-x^2+5x-6>0\)
\(\Leftrightarrow4x>8\)
hay x>2
g: Ta có: \(\left(2x-1\right)^2\le2\left(x-1\right)^2\)
\(\Leftrightarrow4x^2-4x+1-2x^2+4x-2\le0\)
\(\Leftrightarrow2x^2\le1\)
\(\Leftrightarrow x^2\le\dfrac{1}{2}\)
\(\Leftrightarrow-\dfrac{\sqrt{2}}{2}\le x\le\dfrac{\sqrt{2}}{2}\)
Ta có: \(\dfrac{4}{x^2+2x-3}=\dfrac{2x-5}{x+3}-\dfrac{2x}{x-1}\)
\(\Leftrightarrow\dfrac{\left(2x-5\right)\left(x-1\right)-2x\left(x+3\right)}{\left(x-1\right)\left(x+3\right)}=\dfrac{4}{\left(x+3\right)\left(x-1\right)}\)
Suy ra: \(2x^2-2x-5x+5-2x^2-6x=4\)
\(\Leftrightarrow13x=-1\)
hay \(x=-\dfrac{1}{13}\)
\(ĐKXĐ:\hept{\begin{cases}x\ge0\\x\ne1\end{cases}}\)
\(P=\left(\frac{3}{x-1}+\frac{1}{\sqrt{x}+1}\right):\frac{1}{\sqrt{x}-1}\)
\(P=\frac{3+\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\cdot\left(\sqrt{x}-1\right)\)
\(P=\frac{\sqrt{x}+2}{\sqrt{x}+1}\)
Câu này dễ mà, sao c lm CTV được:vv
\(\hept{\begin{cases}2x^2+\frac{x}{2x-y}=2\left(1\right)\\y^2+\frac{y}{2x-y}=4\left(2\right)\end{cases}}\)
ĐKXĐ: \(2x-y\ne0\)
Nhân 2 vế PT (1) với 2 rồi trừ đi PT (2) ta được:
\(4x^2-y^2+1=0\left(3\right)\)
Ta xét 2 trường hợp:
TH1:\(2x+y=0\)<=>\(y=-2x\)
Thay vào PT (1) rồi ta tính được \(\left(x;y\right)=\left(\pm\sqrt{\frac{7}{8}};\mp2\sqrt{\frac{7}{8}}\right)\)
TH2: \(2x+y\ne0\)
<=>\(2x-y=\frac{-1}{2x+y}\)
Thay vào PT(1) ta được:
\(xy=-2\)
Thay vào \(4x^2-y^2+1=0\)ta tính được
\(\left(x;y\right)=\left(...\right)\)
Vậy....
Phần tính toán cậu tự tính nhé:vvv
@Lê Phúc Huy: lí do mik đã viết thẳng vào câu hỏi. Ngay dòng dòng đầu mà bạn không thấy à. Hay mắt lé mà không thấy :]>
\(1,PT\Leftrightarrow2x-1=5\Leftrightarrow x=3\\ 2,\Leftrightarrow x-5=9\Leftrightarrow x=14\\ 3,ĐK:x\ge1\\ PT\Leftrightarrow3\sqrt{x-1}=21\Leftrightarrow\sqrt{x-1}=7\Leftrightarrow x=50\left(tm\right)\\ 4,\Leftrightarrow x=\dfrac{\sqrt{50}}{\sqrt{2}}=\dfrac{5\sqrt{2}}{\sqrt{2}}=5\)
Ta có: \(\dfrac{x-3}{x-2}-\dfrac{x-2}{x-4}=1\dfrac{5}{21}\)
\(\Leftrightarrow\dfrac{21\left(x-3\right)\left(x-4\right)}{21\left(x-2\right)\left(x-4\right)}-\dfrac{21\left(x-2\right)^2}{21\left(x-2\right)\left(x-4\right)}=\dfrac{26\left(x-2\right)\left(x-4\right)}{21\left(x-2\right)\left(x-4\right)}\)
\(\Leftrightarrow26\left(x^2-6x+8\right)=21\left(x^2-7x+12\right)-21\left(x^2-4x+4\right)\)
\(\Leftrightarrow26x^2-156x+208=21x^2-147x+252-21x^2+84x-84\)
\(\Leftrightarrow26x^2-156x+208+63x-168=0\)
\(\Leftrightarrow26x^2-93x+40=0\)
\(\text{Δ}=\left(-93\right)^2-4\cdot26\cdot40\)
\(=8649-4160\)
\(=4489\)
Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{93-67}{52}=\dfrac{1}{2}\left(nhận\right)\\x_2=\dfrac{93+67}{52}=\dfrac{40}{13}\left(nhận\right)\end{matrix}\right.\)