K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có: \(\dfrac{x-3}{x-2}-\dfrac{x-2}{x-4}=1\dfrac{5}{21}\)

\(\Leftrightarrow\dfrac{21\left(x-3\right)\left(x-4\right)}{21\left(x-2\right)\left(x-4\right)}-\dfrac{21\left(x-2\right)^2}{21\left(x-2\right)\left(x-4\right)}=\dfrac{26\left(x-2\right)\left(x-4\right)}{21\left(x-2\right)\left(x-4\right)}\)

\(\Leftrightarrow26\left(x^2-6x+8\right)=21\left(x^2-7x+12\right)-21\left(x^2-4x+4\right)\)

\(\Leftrightarrow26x^2-156x+208=21x^2-147x+252-21x^2+84x-84\)

\(\Leftrightarrow26x^2-156x+208+63x-168=0\)

\(\Leftrightarrow26x^2-93x+40=0\)

\(\text{Δ}=\left(-93\right)^2-4\cdot26\cdot40\)

\(=8649-4160\)

\(=4489\)

Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}x_1=\dfrac{93-67}{52}=\dfrac{1}{2}\left(nhận\right)\\x_2=\dfrac{93+67}{52}=\dfrac{40}{13}\left(nhận\right)\end{matrix}\right.\)

1 tháng 2 2018

\(\frac{2x+1}{4}\)-\(\frac{y-2}{3}\)=\(\frac{1}{12}\)

=\(\frac{3.\left[2x+1\right]}{12}\)-\(\frac{4.\left[y-2\right]}{12}\)=\(\frac{1}{12}\)

=6x+3-4y-6=1

=6x-3-4y=1

=6x-4y=4

=2[3x-2y]=4

MK MỚI HỌC LỚP 8 ,CHÚA SẼ CHUYỂN HỆ PHƯƠNG TRÌNH CUỐI CÙNG ,BẠN GIẢI NỐT NHA 

22 tháng 6 2018

Ta có: \(\hept{\begin{cases}\left(\frac{1}{x}+y\right)+\left(\frac{1}{x}-y\right)=\frac{5}{8}\\\left(\frac{1}{x}+y\right)-\left(\frac{1}{x}-y\right)=-\frac{3}{8}\end{cases}\Leftrightarrow\hept{\begin{cases}\frac{2}{x}=\frac{5}{8}\\2y=-\frac{3}{8}\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{16}{5}\\y=-\frac{3}{16}\end{cases}}}\)

a: Ta có: \(2x+3>1-x\)

\(\Leftrightarrow3x>-2\)

hay \(x>-\dfrac{2}{3}\)

b: Ta có: \(15-2\left(x-3\right)< -2x+5\)

\(\Leftrightarrow15-2x+6+2x-5< 0\)

\(\Leftrightarrow16< 0\left(vôlý\right)\)

c: Ta có: \(\left(x+1\right)\left(x-3\right)\le\left(x+4\right)\left(x-1\right)\)

\(\Leftrightarrow x^2-3x+x-3-x^2+x-4x+4\le0\)

\(\Leftrightarrow-5x\le-1\)

hay \(x\ge\dfrac{1}{5}\)

d: Ta có: \(\dfrac{2x+1}{3}-\dfrac{1-x}{2}\ge1-\dfrac{x}{4}\)

\(\Leftrightarrow8x+4-6+6x\ge12-3x\)

\(\Leftrightarrow14x+3x\ge12+2=14\)

\(\Leftrightarrow x\ge\dfrac{14}{17}\)

e: Ta có: \(\dfrac{x+1}{2}-\dfrac{2-x}{3}< \dfrac{2x-3}{4}\)

\(\Leftrightarrow6x+12+4x-8< 6x-9\)

\(\Leftrightarrow4x< -9+8-12=-13\)

hay \(x< -\dfrac{13}{4}\)

f: Ta có: \(\left(x+1\right)\left(x-2\right)-\left(2-x\right)\left(3-x\right)>0\)

\(\Leftrightarrow x^2-2x+x-2-\left(x-2\right)\left(x-3\right)>0\)

\(\Leftrightarrow x^2-x-2-x^2+5x-6>0\)

\(\Leftrightarrow4x>8\)

hay x>2

g: Ta có: \(\left(2x-1\right)^2\le2\left(x-1\right)^2\)

\(\Leftrightarrow4x^2-4x+1-2x^2+4x-2\le0\)

\(\Leftrightarrow2x^2\le1\)

\(\Leftrightarrow x^2\le\dfrac{1}{2}\)

\(\Leftrightarrow-\dfrac{\sqrt{2}}{2}\le x\le\dfrac{\sqrt{2}}{2}\)

Ta có: \(\dfrac{4}{x^2+2x-3}=\dfrac{2x-5}{x+3}-\dfrac{2x}{x-1}\)

\(\Leftrightarrow\dfrac{\left(2x-5\right)\left(x-1\right)-2x\left(x+3\right)}{\left(x-1\right)\left(x+3\right)}=\dfrac{4}{\left(x+3\right)\left(x-1\right)}\)

Suy ra: \(2x^2-2x-5x+5-2x^2-6x=4\)

\(\Leftrightarrow13x=-1\)

hay \(x=-\dfrac{1}{13}\)

13 tháng 8 2020

\(ĐKXĐ:\hept{\begin{cases}x\ge0\\x\ne1\end{cases}}\)

\(P=\left(\frac{3}{x-1}+\frac{1}{\sqrt{x}+1}\right):\frac{1}{\sqrt{x}-1}\)

\(P=\frac{3+\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\cdot\left(\sqrt{x}-1\right)\)

\(P=\frac{\sqrt{x}+2}{\sqrt{x}+1}\)

20 tháng 7 2020

Câu này dễ mà, sao c lm CTV được:vv

\(\hept{\begin{cases}2x^2+\frac{x}{2x-y}=2\left(1\right)\\y^2+\frac{y}{2x-y}=4\left(2\right)\end{cases}}\)

ĐKXĐ: \(2x-y\ne0\)

Nhân 2 vế PT (1) với 2 rồi trừ đi PT (2) ta được:

\(4x^2-y^2+1=0\left(3\right)\)

Ta xét 2 trường hợp:

TH1:\(2x+y=0\)<=>\(y=-2x\)

Thay vào PT (1) rồi ta tính được \(\left(x;y\right)=\left(\pm\sqrt{\frac{7}{8}};\mp2\sqrt{\frac{7}{8}}\right)\)

TH2: \(2x+y\ne0\)

<=>\(2x-y=\frac{-1}{2x+y}\)

Thay vào PT(1) ta được:

\(xy=-2\)

Thay vào \(4x^2-y^2+1=0\)ta tính được

\(\left(x;y\right)=\left(...\right)\)

Vậy....

Phần tính toán cậu tự tính nhé:vvv

20 tháng 7 2020

@Lê Phúc Huy: lí do mik đã viết thẳng vào câu hỏi. Ngay dòng dòng đầu mà bạn không thấy à. Hay mắt lé mà không thấy :]>

23 tháng 10 2021

\(1,PT\Leftrightarrow2x-1=5\Leftrightarrow x=3\\ 2,\Leftrightarrow x-5=9\Leftrightarrow x=14\\ 3,ĐK:x\ge1\\ PT\Leftrightarrow3\sqrt{x-1}=21\Leftrightarrow\sqrt{x-1}=7\Leftrightarrow x=50\left(tm\right)\\ 4,\Leftrightarrow x=\dfrac{\sqrt{50}}{\sqrt{2}}=\dfrac{5\sqrt{2}}{\sqrt{2}}=5\)