Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1, x(x - 5) - 4x + 20 = 0
=> x(x - 5) - 4(x - 5) = 0
=> (x - 4)(x - 5) = 0
=> x - 4 = 0 hoặc x - 5 = 0
=> x = 4 hoặc x = 5
=> x thuộc {4; 5}
2, 3(x + 1) + x(x + 1)
= (3 + x)(x + 1)
3, 2x3 + x = 0
=> x(2x2 + 1) = 0
=> x = 0 hoặc 2x2 + 1 = 0
=> x = 0 hoặc 2x2 = -1
=> x = 0 hoặc x2 = -1/2 (vô lí vì x2 > hoặc = 0 với mọi x)
=> x = 0
4, x3 - 16x = 0
=> x(x2 - 16) = 0
=> x = 0 hoặc x2 - 16 = 0
=> x = 0 hoặc x2 = 16
=> x = 0 hoặc x = 4 hoặc x = -4
=> x thuộc {-4; 0; 4}
5, x2 + 6x = -9
=> x2 + 6x + 9 = 0
=> x2 + 2.3.x + 32 = 0
=> (x + 3)2 = 0
=> x + 3 = 0
=> x = -3
6, x4 - 2x3 + 10x2 - 20x = 0
=> x2(x2 + 10) - 2x(x2 + 10) = 0
=> (x2 + 2x)(x2 + 10) = 0
=> x(x +2)(x2 + 10) = 0
-TH1: x = 0
-TH2: x + 2 = 0 => x = -2
-TH3: x2 + 10 = 0 => x2 = -10 (vô lí vì x2 > hoặc = 0 với mọi x)
=> x thuộc {0; -2}
7, (2x - 3)2 = (x + 5)2
-TH1: 2x - 3 = x + 5
=> x = 8
- TH2: - 2x + 3 = x + 5
=> -3x = 2
=> x = \(\frac{-2}{3}\)
- TH3: 2x - 3 = - x - 5
=> 3x = -2
=> x = \(\frac{-2}{3}\)
- TH4: - 2x + 3 = - x - 5
=> -x = -8
=> x = 8`
=> x thuộc {\(\frac{-2}{3}\); 8}
Bài 1:
1. \(x-8=3-2\left(x+4\right)\)
\(x-8=3-2x-8\)
\(3x=3\Rightarrow x=1\)
2. \(2\left(x+3\right)-3\left(x-1\right)=2\)
\(2x+6-3x+3=2\)
\(-x+9=2\Rightarrow x=7\)
3. \(4\left(x-5\right)-\left(3x-1\right)=x-19\)
\(4x-20-3x+1=x-19\)
\(0x=0\Rightarrow x=0\)
4. \(7-\left(x-2\right)=5\left(2x-3\right)\)
\(7-x+2=10x-15\)
\(-11x=-24\Rightarrow x=\frac{24}{11}\)
5. \(32-4\left(0,5y-5\right)=3y+2\)
\(32-2y+20=3y+2\)
\(-5y=-50\Rightarrow y=10\)
6. \(3\left(x-1\right)-x=2x-3\)
\(3x-3-x=2x-3\)
\(0x=0\Rightarrow x=0\)
Bài 2:
1. \(\frac{2-x}{3}=\frac{3-2x}{5}\)
\(\frac{\left(2-x\right)5}{15}-\frac{\left(3-2x\right)3}{15}=0\)
\(\frac{10-5x-9+6x}{15}=0\)
\(x+1=0\Rightarrow x=-1\)
2. \(\frac{3-4x}{4}=\frac{x+2}{5}\)
\(\frac{5\left(3-4x\right)}{20}-\frac{4\left(x+2\right)}{20}=0\)
\(\frac{15-20x-4x-8}{20}=0\)
\(7-24x=0\)
\(24x=7\Rightarrow x=\frac{7}{24}\)
\(4+2x\left(2x+4\right)=-x\)
\(4+2x.2x+8x=-x\)
\(4x+8x+x=-4\)
\(13x=-4\)
\(x=-\frac{4}{13}\)
Vậy pt có nghiệm là { -4/13 }
Mình giải kĩ lại câu cuối nha.
\(\left(3x+5\right).\left(x^2+x+1\right)=0\)
+ Vì \(x^2+x+1>0\) \(\forall x.\)
\(\Rightarrow x^2+x+1\ne0.\)
\(\Leftrightarrow3x+5=0\)
\(\Leftrightarrow3x=0-5\)
\(\Leftrightarrow3x=-5\)
\(\Leftrightarrow x=\left(-5\right):3\)
\(\Leftrightarrow x=-\frac{5}{3}\)
Vậy phương trình có tập hợp nghiệm là: \(S=\left\{-\frac{5}{3}\right\}.\)
Chúc bạn học tốt!
a) (x + 6)(3x + 1) + x2 - 36 = 0
<=> 3x2 + x + 18x + 6 + x2 - 36 = 0
<=> 4x2 + 19x - 30 = 0
<=> 4x2 + 24x - 5x - 30 = 0
<=> 4x(x + 6) - 5(x + 6) = 0
<=> (x + 6)(4x - 5) = 0
<=> x + 6 = 0 hoặc 4x - 5 = 0
<=> x = -6 hoặc x = 5/4
Bài 1 mình đã làm xong rồi, anh em nào giúp mình bài 2 với!
Bài 1:
a) (5x-4)(4x+6)=0
\(\Leftrightarrow\orbr{\begin{cases}5x-4=0\\4x+6=0\end{cases}\Leftrightarrow\orbr{\begin{cases}5x=4\\4x=-6\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{4}{5}\\y=\frac{-3}{2}\end{cases}}}\)
b) (x-5)(3-2x)(3x+4)=0
<=> x-5=0 hoặc 3-2x=0 hoặc 3x+4=0
<=> x=5 hoặc x=\(\frac{3}{2}\)hoặc x=\(\frac{-4}{3}\)
c) (2x+1)(x2+2)=0
=> 2x+1=0 (vì x2+2>0)
=> x=\(\frac{-1}{2}\)
bài 1:
a) (5x - 4)(4x + 6) = 0
<=> 5x - 4 = 0 hoặc 4x + 6 = 0
<=> 5x = 0 + 4 hoặc 4x = 0 - 6
<=> 5x = 4 hoặc 4x = -6
<=> x = 4/5 hoặc x = -6/4 = -3/2
b) (x - 5)(3 - 2x)(3x + 4) = 0
<=> x - 5 = 0 hoặc 3 - 2x = 0 hoặc 3x + 4 = 0
<=> x = 0 + 5 hoặc -2x = 0 - 3 hoặc 3x = 0 - 4
<=> x = 5 hoặc -2x = -3 hoặc 3x = -4
<=> x = 5 hoặc x = 3/2 hoặc x = 4/3
c) (2x + 1)(x^2 + 2) = 0
vì x^2 + 2 > 0 nên:
<=> 2x + 1 = 0
<=> 2x = 0 - 1
<=> 2x = -1
<=> x = -1/2
bài 2:
a) (2x + 7)^2 = 9(x + 2)^2
<=> 4x^2 + 28x + 49 = 9x^2 + 36x + 36
<=> 4x^2 + 28x + 49 - 9x^2 - 36x - 36 = 0
<=> -5x^2 - 8x + 13 = 0
<=> (-5x - 13)(x - 1) = 0
<=> 5x + 13 = 0 hoặc x - 1 = 0
<=> 5x = 0 - 13 hoặc x = 0 + 1
<=> 5x = -13 hoặc x = 1
<=> x = -13/5 hoặc x = 1
b) (x^2 - 1)(x + 2)(x - 3) = (x - 1)(x^2 - 4)(x + 5)
<=> x^4 - x^3 - 7x^2 + x + 6 = x^4 + 4x^3 - 9x^2 - 16x + 20
<=> x^4 - x^3 - 7x^2 + x + 6 - x^4 - 4x^3 + 9x^2 + 16x - 20 = 0
<=> -5x^3 - 2x^2 + 17x - 14 = 0
<=> (-x + 1)(x + 2)(5x - 7) = 0
<=> x - 1 = 0 hoặc x + 2 = 0 hoặc 5x - 7 = 0
<=> x = 0 + 1 hoặc x = 0 - 2 hoặc 5x = 0 + 7
<=> x = 1 hoặc x = -2 hoặc 5x = 7
<=> x = 1 hoặc x = -2 hoặc x = 7/5
\(x-5=\frac{1}{3\left(x+2\right)}\left(đkxđ:x\ne-2\right)\)
\(< =>3\left(x-5\right)\left(x+2\right)=1\)
\(< =>3\left(x^2-3x-10\right)=1\)
\(< =>x^2-3x-10=\frac{1}{3}\)
\(< =>x^2-3x-\frac{31}{3}=0\)
giải pt bậc 2 dễ r
\(\frac{x}{3}+\frac{x}{4}=\frac{x}{5}-\frac{x}{6}\)
\(< =>\frac{4x+3x}{12}=\frac{6x-5x}{30}\)
\(< =>\frac{7x}{12}=\frac{x}{30}< =>12x=210x\)
\(< =>x\left(210-12\right)=0< =>x=0\)
\(2x\left(x-3\right)-x+3=0\)
<=> \(2x\left(x-3\right)-\left(x-3\right)=0\)
<=> \(\left(x-3\right)\left(2x-1\right)=0\)
<=> \(\orbr{\begin{cases}x=3\\x=\frac{1}{2}\end{cases}}\)
Vậy...
1.
\(\left(x-5\right)^2+3\left(x-5\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left(x-5+3\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-5=0\\x-2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=2\end{matrix}\right.\)
2.
\(\left(x^2-9\right)+2\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+3\right)+2\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x+5=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-5\end{matrix}\right.\)
3.
\(\left(2x+1\right)^2+\left(x-1\right)\left(2x+1\right)=0\)
\(\Leftrightarrow\left(2x+1\right)\left(2x+1+x-1\right)=0\)
\(\Leftrightarrow\left(2x+1\right).3x=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3x=0\\2x+1=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=-\dfrac{1}{2}\end{matrix}\right.\)
4.
\(\left(x-1\right)\left(x+3\right)+\left(x+3\right)^2=0\)
\(\Leftrightarrow\left(x+3\right)\left(x-1+x+3\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(2x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\2x+2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=-1\end{matrix}\right.\)