Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2x(8x-1)2(4x-1)= 9
<=> 2x(64x2-16x+1)(4x-1)=9
<=>(128x3 - 32x2 + 2x)(4x-1)=9
<=>512x4 - 256x3 + 40x2 - 2x=9
<=>64x4 - 32x3 + 5x2 - 0,25x - 1,125=0
<=>64x3(x-0,5) + 5x(x-0,5) + 2,5x -0,25x - 1,125 = 0
<=> (x-0,5)(64x3 + 5x - 2,25) = 0
<=> (x-0,5)(64x3 + 16x2 - 16x2 - 4x + 9x - 2,25)=0
<=>(x-0,5)[64x2 (x + 0,25 ) -16x(x + 0,25) + 9(x + 0,25) = 0
<=> (x-0,5)(x+0,25)(64x2 -16x +9) = 0 (vì 64x2 -16x +9 > 0)
<=>\(\orbr{\begin{cases}x-0,5=0\\x+0,25=0\end{cases}}\)
<=>\(\orbr{\begin{cases}x=0,5\\x=-0,25\end{cases}}\)
Vậy phương trình có hai nghiệm là S={\(\frac{1}{2}\) ; \(\frac{-1}{4}\)}
\(2x\left(8x-1\right)^2\left(4x-1\right)=9\)
\(\Leftrightarrow8x\left(8x-1\right)^2\left(8x-2\right)=72\)(nhân hai vế với 8)
Đặt \(8x-1=y\). Khi đó, pt được viết lại:
\(\left(y+1\right)y^2\left(y-1\right)=72\)
\(\Leftrightarrow y^2\left(y^2-1\right)=72\)
\(\Leftrightarrow y^4-y^2-72=0\)
\(\Leftrightarrow y^4+3y^3-3y^3-9y^2+8y^2+24y-24y-72=0\)
\(\Leftrightarrow y^3\left(y+3\right)-3y^2\left(y+3\right)+8y\left(y+3\right)-24\left(y+3\right)=0\)
\(\Leftrightarrow\left(y+3\right)\left(y^3-3y^2+8y-24\right)=0\)
\(\Leftrightarrow\left(y+3\right)\left(y^2\left(y-3\right)+8\left(y-3\right)\right)=0\)
\(\Leftrightarrow\left(y+3\right)\left(y-3\right)\left(y^2+8\right)=0\)
Mà \(y^2+8\ge8>0\)
\(\Rightarrow\orbr{\begin{cases}y+3=0\\y-3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}y=-3\\y=3\end{cases}}}\)
TH1: \(y=-3\)
\(\Rightarrow8x-1=-3\)
\(\Leftrightarrow8x=-2\)
\(\Leftrightarrow x=\frac{-1}{4}\)
TH2: \(y=3\)
\(\Rightarrow8x-1=3\)
\(\Leftrightarrow8x=4\)
\(\Leftrightarrow x=\frac{1}{2}\)
Vậy tập nghiệm của pt là S={\(\frac{-1}{4};\frac{1}{2}\)}