K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 7 2017

a)\(\left(x-1\right)^3-\left(x-3\right)^3=98\)

     \(\left[x-1-x+3\right]\left[\left(x-1\right)^2+\left(x-1\right)\left(x-3\right)+\left(x-3\right)^2\right]=98\)

      \(2\left(x^2-2x+1+x^2-4x+3+x^2-6x+9\right)=98\)

       \(2\left(3x^2-12x+13\right)=98\)

       \(3x^2-12x+13=49\)

       \(3x^2-12x-36=0\)

     \(x^2-4x-12=0\)

        \(x^2-4x+4=16\)

            \(\Rightarrow\left(x-2\right)^2=16\)

             \(\Rightarrow\hept{\begin{cases}x-2=4\\x-2=-4\end{cases}\Rightarrow}\hept{\begin{cases}x=6\\x=-2\end{cases}}\)

       

        

9 tháng 11 2017

I. Nội qui tham gia "Giúp tôi giải toán"

1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;

2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.

3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp .

Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.

tôi mong các bn sẽ ko làm như vậy !!!!!

9 tháng 1 2021

Câu 1 : 

a, \(\frac{3\left(2x+1\right)}{4}-\frac{5x+3}{6}=\frac{2x-1}{3}-\frac{3-x}{4}\)

\(\Leftrightarrow\frac{6x+3}{4}+\frac{3-x}{4}=\frac{2x-1}{3}+\frac{5x+3}{6}\)

\(\Leftrightarrow\frac{5x+6}{4}=\frac{9x+1}{6}\Leftrightarrow\frac{30x+36}{24}=\frac{36x+4}{24}\)

Khử mẫu : \(30x+36=36x+4\Leftrightarrow-6x=-32\Leftrightarrow x=\frac{32}{6}=\frac{16}{3}\)

tương tự 

16 tháng 5 2021

\(\frac{19}{4}-\frac{2\left(3x-5\right)}{5}=\frac{3-2x}{10}-\frac{3x-1}{4}\)

\(< =>\frac{19.5}{20}-\frac{8\left(3x-5\right)}{20}=\frac{2\left(3-2x\right)}{20}-\frac{5\left(3x-1\right)}{20}\)

\(< =>95-24x+40=6-4x-15x+5\)

\(< =>-24x+135=-19x+11\)

\(< =>5x=135-11=124\)

\(< =>x=\frac{124}{5}\)

30 tháng 9 2019

cái dell gì zợ????????????

24 tháng 7 2019

a) (x - 1)3 + (2 - x)(4 + 2x + x2) + 3x(x + 2) = 12

<=> x3 - 2x2 + x - x2 + 2x - 1 + 8 + 4x + 2x2 - 4x - 2x2 + 3x2 + 6x = 17

<=> 9x + 7 = 17

<=> 9x = 17 - 7

<=> 9x = 10

<=> x = \(\frac{10}{9}\)

b) (x + 2)(x2 - 2x + 4) - x(x2 - 2) = 15

<=> x3 - 2x2 + 4x + 2x2 - 4x + 8 - x3 + 2x = 15

<=> 2x + 8 = 15

<=> 2x = 15 - 8

<=> 2x = 7

<=> x = \(\frac{7}{2}\)

c) (x - 3)3 - (x - 3)(x2 + 3x + 9) + 9(x2 + 1)2 = 15

<=> x3 + 45x - 18 - x3 - 3x2 - 9x + 3x2 + 9x + 27 = 15

<=> 45x + 9 = 15

<=> 45x = 15 - 9

<=> 45x = 6

<=> x = \(\frac{6}{45}\)

d) x(x - 5)(x + 5) - (x + 2)(x2 - 2x + 4) = 3

<=> x3 - 25x - x3 + 2x2 - 4x - 8 = 3

<=> -25x - 8 = 3

<=> -25x = 3 + 8

<=> -25x = 11

<=> x = \(-\frac{11}{25}\)

24 tháng 7 2019

a)\(\left(x-1\right)^3+\left(2-x\right)\left(4+2x+x^2\right)+3x\left(x+2\right)=17\)

\(=>x^3-3x^2+3x-1+8-x^3+3x^2+6x=17\)

\(=>9x+7=17=>9x=10=>x=\frac{10}{9}\)

26 tháng 1 2021

a, làm tương tự với phần b bài nãy bạn đăng 

b, \(\left(x+1\right)^2-5=x^2+11\)

\(\Leftrightarrow x^2+2x+1-5=x^2+11\)

\(\Leftrightarrow2x-10=0\Leftrightarrow x=5\)

Vậy tập nghiệm của phương trình là S = { 5 } ( kết luận như thế với các phần sau nhé ! ) 

c, \(3\left(3x-1\right)=3x+5\Leftrightarrow9x-3-3x-5=0\)

\(\Leftrightarrow6x-8=0\Leftrightarrow x=\frac{4}{3}\)

d, \(3x\left(2x-3\right)-3\left(3+2x^2\right)=0\)

\(\Leftrightarrow6x^2-9x-9-6x^2=0\Leftrightarrow-9x=9\Leftrightarrow x=-1\)

e, khai triển nó ra rút gọn rồi giải thôi nhé! ( tự làm )

f, \(\left(x-1\right)^2-x\left(x+1\right)+3\left(x-2\right)+5=0\)

\(\Leftrightarrow x^2-2x+1-x^2+x+3x-6+5=0\)

\(\Leftrightarrow2x=0\Leftrightarrow x=\frac{0}{2}\)vô lí 

Vậy phương trình vô nghiệm 

25 tháng 4 2020

Bài 1:

a) (5x-4)(4x+6)=0

\(\Leftrightarrow\orbr{\begin{cases}5x-4=0\\4x+6=0\end{cases}\Leftrightarrow\orbr{\begin{cases}5x=4\\4x=-6\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{4}{5}\\y=\frac{-3}{2}\end{cases}}}\)

b) (x-5)(3-2x)(3x+4)=0

<=> x-5=0 hoặc 3-2x=0 hoặc 3x+4=0

<=> x=5 hoặc x=\(\frac{3}{2}\)hoặc x=\(\frac{-4}{3}\)

c) (2x+1)(x2+2)=0

=> 2x+1=0 (vì x2+2>0)

=> x=\(\frac{-1}{2}\)

30 tháng 4 2020

bài 1: 

a) (5x - 4)(4x + 6) = 0

<=> 5x - 4 = 0 hoặc 4x + 6 = 0

<=> 5x = 0 + 4 hoặc 4x = 0 - 6

<=> 5x = 4 hoặc 4x = -6

<=> x = 4/5 hoặc x = -6/4 = -3/2

b) (x - 5)(3 - 2x)(3x + 4) = 0

<=> x - 5 = 0 hoặc 3 - 2x = 0 hoặc 3x + 4 = 0

<=> x = 0 + 5 hoặc -2x = 0 - 3 hoặc 3x = 0 - 4

<=> x = 5 hoặc -2x = -3 hoặc 3x = -4

<=> x = 5 hoặc x = 3/2 hoặc x = 4/3

c) (2x + 1)(x^2 + 2) = 0

vì x^2 + 2 > 0 nên:

<=> 2x + 1 = 0

<=> 2x = 0 - 1

<=> 2x = -1

<=> x = -1/2

bài 2: 

a) (2x + 7)^2 = 9(x + 2)^2

<=> 4x^2 + 28x + 49 = 9x^2 + 36x + 36

<=> 4x^2 + 28x + 49 - 9x^2 - 36x - 36 = 0

<=> -5x^2 - 8x + 13 = 0

<=> (-5x - 13)(x - 1) = 0

<=> 5x + 13 = 0 hoặc x - 1 = 0

<=> 5x = 0 - 13 hoặc x = 0 + 1

<=> 5x = -13 hoặc x = 1

<=> x = -13/5 hoặc x = 1

b) (x^2 - 1)(x + 2)(x - 3) = (x - 1)(x^2 - 4)(x + 5)

<=> x^4 - x^3 - 7x^2 + x + 6 = x^4 + 4x^3 - 9x^2 - 16x + 20

<=> x^4 - x^3 - 7x^2 + x + 6 - x^4 - 4x^3 + 9x^2 + 16x - 20 = 0

<=> -5x^3 - 2x^2 + 17x - 14 = 0

<=> (-x + 1)(x + 2)(5x - 7) = 0

<=> x - 1 = 0 hoặc x + 2 = 0 hoặc 5x - 7 = 0

<=> x = 0 + 1 hoặc x = 0 - 2 hoặc 5x = 0 + 7

<=> x = 1 hoặc x = -2 hoặc 5x = 7

<=> x = 1 hoặc x = -2 hoặc x = 7/5

9 tháng 4 2018

có ai giải cho đâu mà cảm ơn

9 tháng 4 2018

a, 3x-2=2x-3 <=> 3x-2x=-3+2 <=> x=-1

b, 2x+3=5x+9 <=> 5x-2x=3-9 <=> 3x=-6 <=> x=-2

c, 5-2x=7 <=> 2x=5-7 <=> 2x=-2 <=> x=-1

d, x(x+2)=x(x+3) <=> x^2 + 2x = x^2 + 3x <=> 3x-2x=0 <=> x=0

e, 

27 tháng 1 2021

a, \(3x+2\left(x-5\right)=6-\left(5x-1\right)\)

\(\Leftrightarrow3x+2x-10=6-5x+1\)

\(\Leftrightarrow-15\ne0\)Vậy phương trình vô nghiệm 

b, \(x^3-3x^2-x+3=0\)

\(\Leftrightarrow x\left(x^2-1\right)-3\left(x^2-1\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x-1\right)\left(x+1\right)=0\Leftrightarrow x=3;\pm1\)

Vậy tập nghiệm của phương trình là S = { 1 ; -1 ; 3 }

27 tháng 1 2021

c, \(\frac{1}{x-3}+\frac{x}{x+3}=\frac{2}{x^2-9}ĐK:x\ne\pm3\)

\(\Leftrightarrow\frac{x+3}{\left(x-3\right)\left(x+3\right)}+\frac{x\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}=\frac{2}{\left(x-3\right)\left(x+3\right)}\)

\(\Leftrightarrow x+3+x^2-3x-2=0\)

\(\Leftrightarrow x^2-2x+1=0\Leftrightarrow\left(x-1\right)^2=0\Leftrightarrow x=1\)thỏa mãn 

Vậy ...