Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow\frac{1}{x^2+7x+12}+\frac{1}{x^2+5x+6}+\frac{1}{x^2+3x+2}-\frac{1}{10}=0\)
\(\Rightarrow-\frac{x^2+5x-26}{10\left(x+1\right)\left(x+4\right)}=0\)
\(\Rightarrow x^2+5x-26=0\)
\(\Rightarrow5^2-\left(-4\left(1.26\right)\right)=129\)(cái này là D)
\(\Rightarrow x_{1,2}=\frac{-b+-\sqrt{D}}{2a}=\frac{-5+-\sqrt{129}}{2}\)
\(x=+-\frac{\sqrt{129}}{2}-2\frac{1}{2}\)
\(\left(\text{*}\right)\) Tìm giá trị lớn nhất của biểu thức sau:
Ta có:
\(A=\frac{x^2+1}{x^2-x+1}=\frac{2\left(x^2-x+1\right)-\left(x^2-2x+1\right)}{x^2-x+1}=2-\frac{\left(x-1\right)^2}{x^2-x+1}\le2\) với mọi \(x\)
Dấu \("="\) xảy ra \(\Leftrightarrow\) \(\left(x-1\right)^2=0\) \(\Leftrightarrow\) \(x-1=0\) \(\Leftrightarrow\) \(x=1\)
Vậy, \(A_{max}=2\) \(\Leftrightarrow\) \(x=1\)
-------------------------------------------------
\(B=\frac{3-4x}{x^2+1}=\frac{4\left(x^2+1\right)-\left(4x^2+4x+1\right)}{x^2+1}=4-\frac{\left(2x+1\right)^2}{x^2+1}\le4\) với mọi \(x\)
Dấu \("="\) xảy ra \(\Leftrightarrow\) \(\left(2x+1\right)^2=0\) \(\Leftrightarrow\) \(2x+1=0\) \(\Leftrightarrow\) \(x=-\frac{1}{2}\)
Vậy, \(B_{max}=4\) \(\Leftrightarrow\) \(x=-\frac{1}{2}\)
____________________________________
\(\left(\text{*}\text{*}\right)\) Tìm giá trị nhỏ nhất của biểu thức sau:
Từ \(A=\frac{x^2+1}{x^2-x+1}\)
\(\Rightarrow\) \(3A=\frac{3x^2+3}{x^2-x+1}=\frac{\left(x^2+2x+1\right)+2\left(x^2-x+1\right)}{x^2-x+1}=\frac{\left(x+1\right)^2}{x^2-x+1}+2\ge2\) với mọi \(x\)
Vì \(3A\ge2\) nên \(A\ge\frac{2}{3}\)
Dấu \("="\) xảy ra \(\Leftrightarrow\) \(\left(x+1\right)^2=0\) \(\Leftrightarrow\) \(x+1=0\) \(\Leftrightarrow\) \(x=-1\)
Vậy, \(A_{min}=\frac{2}{3}\) \(\Leftrightarrow\) \(x=-1\)
Câu b) tự giải
\(\frac{4x^2-6x+5}{2x-1}=2x-2+\frac{3}{2x-1}\)
Để biểu thức có giá trị nguyên thì \(\left(2x-1\right)\inƯ\left(3\right)=\left\{1;-1;3;-3\right\}\)
Với 2x - 1 = 1 => 2x = 2 => x = 1
2x - 1 = -1 => 2x = 0 => x = 0
2x - 1 = 3 => 2x = 4 => x = 2
2x - 1 = -3 => 2x = -2 => x = -1
Vậy x = {1;0;2;-1}
ý 1: khi m=2 thì:
(m + 1 )x - 3 = x + 5
<=>(2+1)x-3=x+5
<=>3x-3=x+5
<=>2x=8
<=>x=4
Vậy khi m=2 thì x=4.
ý 2:
Để pt trên <=> với 2x-1=3x+2
Thì 2 PT phải có cùng tập nghiệm hay nghiệm của 2x-1=3x+2 cũng là nghiệm của PT (m + 1 )x - 3 = x + 5
Ta có: 2x-1=3x+2
<=>x=-3
=>(m+1).(-3)-3=(-3)+5
<=>-3m-3-3=2
<=>-3m=8
<=>m=-8/3
Vậy m=-8/2 thì 2 PT nói trên tương đương với nhau.
a/ (x + 3)4 + (x + 5)4 = 16
=> (x2 + 6x + 9)2 + (x2 + 10x + 25)2 = 16
=> x4 + 36x2 + 81 + 12x3 + 108x + 18x2 + x4 + 100x2 + 625 + 20x3 + 500x + 50x2 = 16
=> 2x4 + 32x3 + 204x2 + 608x + 690 = 0
=> 2(x + 3)(x + 5)(x2 + 8x + 23) = 0
=> (x + 3)(x + 5)(x2 + 8x + 23) = 0
=> x = -3
hoặc x = -5
hoặc x2 + 8x + 23 = 0 , mà x2 + 8x + 23 > 0 => pt vô nghiệm
Vậy x = -3 , x = -5
a) \(x^4+2x^3-4x-4=\left[\left(x^2\right)^2-4\right]+\left(2x^3-4x\right)\)
\(=\left(x^2+2\right)\left(x^2-2\right)+2x\left(x^2-2\right)\)
\(=\left(x^2+2+2x\right)\left(x^2-2\right)\)
a) \(x^4+2x^3-4x-4=\left(x^4+2x^3+x^2\right)-\left(x^2+4x+4\right)=x^2\left(x+1\right)^2-\left(x+2\right)^2\)
\(=\left(x^2+x-x-2\right)\left(x^2+x+x+2\right)=\left(x^2-2\right)\left(x^2+2x+2\right)\)
b) \(x^2+y^2-x^2y^2+xy-x-y=\left(x^2-x^2y^2\right)+\left(y^2-y\right)+\left(xy-x\right)\)
\(=x^2\left(1-y\right)\left(1+y\right)-y\left(1-y\right)-x\left(1-y\right)=\left(1-y\right)\left(x^2+x^2y-y-x\right)\)
\(=\left(1-y\right)\left[\left(x-1\right)x+y\left(x-1\right)\left(x+1\right)\right]=\left(1-y\right)\left(x-1\right)\left(x+xy+y\right)\)
c) Không phân tích được.
b/ (x + 5)(x + 2) - 3(4x - 3) = (5 - x)2
=> x2 + 7x + 10 - 12x + 9 = 25 - 10x + x2
=> x2 + 7x + 10 - 12x + 9 - 25 + 10x - x2 = 0
=> 5x - 6 = 0
=> x = 6/5
cần tớ giải giúp không