Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{x+3-4\sqrt{x-1}}+\sqrt{x+8-6\sqrt{x-1}}=1\) ( SỬA ĐỀ)
\(\sqrt{x-1-2.2.\sqrt{x-1}+4}+\sqrt{x-1-2.3.\sqrt{x-1}+9}=1\)
\(|x-1-2|+|x-1-3|=1\)
\(|x-3|+|x-4|=1\)
Với \(x\le3\)thì PT thành \(3-x+4-x=1\) \(\Rightarrow-2x=-6\Rightarrow x=3\)(thõa mãn)
Với \(3\le x< 4\)thì PT thành \(x-3+4-x=1\Leftrightarrow0x=0\Rightarrow\)Đúng với mọi x từ \(3\le x< 4\)
Với \(x\ge4\)thì PT thành \(x-3+x-4=1\Leftrightarrow2x=8\Leftrightarrow x=4\)(thõa mãn)
Vậy \(3\le x\le4\)
a) điều kiện xác định \(x-2\ge0vàx^2-4x+3\ge0\)
\(pt\Leftrightarrow x^2-4x+3=x-2\Leftrightarrow x^2-5x+5=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5+\sqrt{5}}{2}\\x=\dfrac{5-\sqrt{5}}{2}\left(L\right)\end{matrix}\right.\) bạn giải nó bằng cách giải den ta nha .
vậy \(x=\dfrac{5+\sqrt{5}}{2}\)
b) điều kiện xác định : \(x\ge1\)
đặc \(\sqrt{x-1}=t\left(t\ge0\right)\)
\(pt\Leftrightarrow2\left(\dfrac{t}{2}-3\right)=\dfrac{2.2t}{3}-\dfrac{1}{3}\) giải phương trình này rồi thế ngược lại là xong
c) điều kiện xác định : \(x\ge\dfrac{7}{9}\)
\(pt\Leftrightarrow9x-7=7x+5\Leftrightarrow x=6\) vậy \(x=6\)
d) câu cuối chờ nhát h mk chưa nghỉ ra
d) Ta có pt \(4+\sqrt{2x+6-6\sqrt{2x-3}}=\sqrt{2x-2+2\sqrt{2x-3}}=0\)
\(\Leftrightarrow4+\sqrt{2x-3-6\sqrt{2x-3}+9}=\sqrt{2x-3-2\sqrt{2x-3}+1}\Leftrightarrow4+\left|\sqrt{2x-3}-3\right|=\left|\sqrt{2x-3}-1\right|\)
Đặt \(\sqrt{2x-3}=a\left(a\ge0\right),pt\Leftrightarrow4+\left|a-3\right|=\left|a-1\right|\)
xét \(a\ge3,pt\Leftrightarrow4+a-3=a-1\Leftrightarrow0a=1\left(VN\right)\)
xét \(a\le1.pt\Leftrightarrow4+3-a=1-a\Leftrightarrow0a=6\left(VN\right)\)
xét \(3>x>1,pt\Leftrightarrow4+3-a=a-1\Leftrightarrow a=1\)(k thỏa mãn )
=> pt vô nghiệm !
Lời giải:
a) ĐK: $x\geq -2$
PT \(\Leftrightarrow \sqrt{(x+2)-4\sqrt{x+2}+4}+\sqrt{(x+2)-6\sqrt{x+2}+9}=1\)
\(\Leftrightarrow \sqrt{(\sqrt{x+2}-2)^2}+\sqrt{(\sqrt{x+2}-3)^2}=1\)
\(\Leftrightarrow |\sqrt{x+2}-2|+|\sqrt{x+2}-3|=1\)
Áp dụng BĐT dạng $|a|+|b|\geq |a+b|$ ta có:
\(|\sqrt{x+2}-2|+|\sqrt{x+2}-3|=|\sqrt{x+2}-2|+|3-\sqrt{x+2}|\)
\(\geq |\sqrt{x+2}-2+3-\sqrt{x+2}|=1\)
Dấu "=" xảy ra khi $(\sqrt{x+2}-2)(3-\sqrt{x+2})\geq 0$
$\Leftrightarrow 3\geq \sqrt{x+2}\geq 2$
$\Leftrightarrow 7\geq x\geq 2$
Vậy.........
b)
ĐK: $x\geq \frac{5}{2}$
PT $\Leftrightarrow \sqrt{2x-4+2\sqrt{2x-5}}+\sqrt{2x+4+6\sqrt{2x-5}}=14$
$\Leftrightarrow \sqrt{(2x-5)+2\sqrt{2x-5}+1}+\sqrt{(2x-5)+6\sqrt{2x-5}+9}=14$
$\Leftrightarrow \sqrt{(\sqrt{2x-5}+1)^2}+\sqrt{(\sqrt{2x-5}+3)^2}=14$
$\Leftrightarrow \sqrt{2x-5}+1+\sqrt{2x-5}+3=14$
$\Leftrightarrow \sqrt{2x-5}=5$
$\Rightarrow x=15$ (tm)
Thiên Thư mk cx hk lp 7 nek
a\ \(\sqrt{x^2-4x+4}=6\)
\(x^2-4x+4=6^2=36\)
\(x\left(x-4\right)=32\)
ta có \(32=8.4=\left(-8\right)\left(-4\right)\)
\(\Rightarrow x\in\left\{8;-4\right\}\)
b)\(\sqrt{2x+5}=2x-1\)
\(2x+4=4x^2-4x\)
\(2\left(x+2\right)=4x\left(4x-1\right)\)
\(........................\)
e bí mất r a ạ