Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2x^2+5xy+3y^2\\= 2x^2+2xy+3xy+3y^2\\= 2x\left(x+y\right)+3y\left(x+y\right)\\=\left(2x+3y\right)\left(x+y\right) \)
2x^2-5xy-3y^2
= 2^x + xy - 6xy - 3y^2
= x(2x + y) - 3y(2x + y)
= (2x + y)(x - 3y)
Đặt m = y2 .Điều kiện m ≥ 0
Ta có: y 4 – 1,16 y 2 + 0,16 =0 ⇔ m 2 -1,16m + 0,16 =0
Phương trình m 2 -1,16m + 0,16 = 0 có hệ số a = 1, b = -1,16, c = 0,16 nên có dạng a + b + c = 0
suy ra: m 1 = 1 , m 2 = 0,16
Ta có: y 2 =1 ⇒ y = ± 1
y 2 =0,16 ⇒ y = ± 0,4
Vậy phương trình đã cho có 4 nghiệm : y 1 =1 ; y 2 =-1 ; y 3 =0,4 ; y 4 =-0,4
Cộng vế với vế của từng phương trình với nhau ta được:
( x 3 + 3 x 2 + x – 5 ) + ( y 3 + 3 y 2 + y – 5 ) + ( z 3 + 3 z 2 + z – 5 ) = 0
( x – 1 ) ( x 2 + 4 x + 5 ) + ( y – 1 ) ( y 2 + 4 y + 5 ) + ( z – 1 ) ( z 2 + 4 z + 5 ) = 0 ( 1 )
Nếu x > 1 ⇒ z 3 + 3 z 2 + z – 5 > 1 ⇔ ( z – 1 ) ( z 2 + 4 z + 5 ) > 0 ⇒ z > 1
Tương tự với z > 1 ⇒ y > 1
Suy ra VT (1) > 0 (phương trình vô nghiệm)
Chứng minh tương tự với x < 1 ta cũng được phương trình (1) vô nghiệm
Suy ra phương trình (1) có nghiệm duy nhất x = y = z = 1
Đáp án:D
Gọi x1,x2 là các nghiệm của phương trình đã cho
Áp dụng hệ thức Vi-et,ta có :
x1 + x2 = -5 ; x1x2 = -1
gọi y1,y2 là các nghiệm của phương trình phải lập,ta được :
y1 + y2 = x14 + x24 , y1y2 = x14x24
Ta có : x12 + x22 = ( x1 + x2 )2 - 2x1x2 = 25 + 2 - 27
Do đó : y1 + y2 = x14 + x24 = ( x12 + x22 )2 - 2x12x22 = 729 - 2 = 727
y1y2 = ( x1x2 )4 = 1
Từ đó pt phải lập có dạng : y2 - 727y + 1 = 0
Ta co: P = -1 <0
=> (1) có 2 nghiệm phân biệt khác dấu
Gọi hai nghiệm đó là \(x_1;x_2\)
=> \(x_1+x_2=-5;x_1.x_2=-1\)
Ta có: \(\left(x_1.x_2\right)^4=\left(-1\right)^4=1\)
\(\left(x_1\right)^4+\left(x_2\right)^4=\left(x_1^2+x_2^2\right)^2-2x_1^2x_2^2=\left[\left(x_1+x_2\right)^2-2x_1x_2\right]^2-2x_1^2x_2^2\)
\(=\left[\left(-5\right)^2-2.\left(-1\right)\right]^2-2.\left(-1\right)^2\)
\(=727\)
=> Phương trình có các nghiệm lũy thừa bậc 4 của các nghiệm phương trình (1) là:
\(x^2-727x+1=0\)
\(x^4+y^4=3y^2+1\Leftrightarrow-y^4+3y^2+1=x^4\ge0\)
\(\Rightarrow-y^4+3y^2+1\ge0\Rightarrow\frac{3-\sqrt{13}}{2}\le y^2\le\frac{3+\sqrt{13}}{2}\)
Mà \(y\in Z\Rightarrow y^2\)là số chính phương \(\Rightarrow y^2=0;1\)
*\(y^2=0\Rightarrow x^4=1\Rightarrow x=-1;1\)
*\(y^2=1\Rightarrow x^4+1=3+1\Rightarrow x^4=3\Rightarrow x\notin Z\)
Vậy phương trình có nghiệm nguyên \(\left(-1;0\right),\left(1;0\right)\)