Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a)2xy+4y-x=5\)
\(\Leftrightarrow\left(2xy+4y\right)-x=3+2\)
\(\Leftrightarrow2y\left(x+2\right)-x-2=3\)
\(\Leftrightarrow2y\left(x+2\right)-\left(x+2\right)=3\)
\(\Leftrightarrow\left(x+2\right)\left(2y-1\right)=3\)
\(\Rightarrow\left(x+2\right);\left(2y-1\right)\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
Xét từng trường hợp :
- \(\hept{\begin{cases}x+2=1\\2y-1=3\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-1\\y=2\end{cases}}\)
- \(\hept{\begin{cases}x+2=3\\2y-1=1\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=1\end{cases}}}\)
- \(\hept{\begin{cases}x+2=-1\\2y-1=-3\end{cases}\Leftrightarrow\hept{\begin{cases}x=-3\\y=-1\end{cases}}}\)
- \(\hept{\begin{cases}x+2=-3\\2y-1=-1\end{cases}\Leftrightarrow\hept{\begin{cases}x=-5\\y=0\end{cases}}}\)
Vậy
\(2x+y=xy-3\)
\(\Leftrightarrow xy-2x-y=3\)
\(\Leftrightarrow\left(xy-2x\right)-y=-2+5\)
\(\Leftrightarrow x\left(y-2\right)-y+2=5\)
\(\Leftrightarrow x\left(y-2\right)-\left(y-2\right)=5\)
\(\Leftrightarrow\left(y-2\right)\left(x-1\right)=5\)
\(\Rightarrow\left(y-2\right);\left(x-1\right)\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
Xét các trường hợp như câu trên và kết luận
<=>x2(x+y)+y2(x+y)=2001
<=>(x+y)(x2+y2)=2001
=>x+y, x2+y2 E Ư(2001)={1;3;23;29;69;87;667;2001}
Rồi xét các trường hợp => x,y
16: Tìm nghiệm nguyên của phương trình
x2 –xy + y2 = 3
Hướng dẫn:
Ta có x2 –xy + y2 = 3 ⇔ (x- )2 = 3 –
Ta thấy (x- )2 = 3 – ≥ 0
⇒ -2 ≤ y ≤ 2
⇒ y= ± 2; ±1; 0 thay vào phương trình tìm x
Ta được các nghiệm nguyên của phương trình là :
(x, y) = (-1,-2), (1, 2); (-2, -1); (2,1) ;(-1,1) ;(1, -1)
a, \(2^{x+1}.3^y=12^x\Rightarrow2^{x+1}.3^y=3^x.4^x\Rightarrow2^{x+1}.3^y=2^{2x}.3^x\)
=> x + 1 = 2x ; y = x
=> x = 1 ; y = x = 1
b, \(10^x:5^y=20^y\Rightarrow2^x.5^x:5^y=4^y.5^y\Rightarrow2^x.5^{x-y}=2^{2y}.5^y\)
=> x = 2y ; x- y = y => x = 2y
VẬy mọi số tự nhiên x,y đều thỏa mãn miễn x = 2y ( thử xem)
c, \(2^x=4^{y-1}\Rightarrow2^x=2^{2\left(y-1\right)}\Rightarrow x=2\left(y-1\right)\Rightarrow x=2y-2\)
\(27^y=3^{x+8}\Rightarrow3^{3y}=3^{x+8}\Rightarrow3y=x+8\Rightarrow3y=2y-2+6\)
=> 2y + 4 = 3y => y = 4 ;
x = 2.4 - 2 = 6
1: Tìm x, y nguyên tố thoả mãn
y2 – 2x2 = 1
Hướng dẫn:
Ta có y2 – 2x2 = 1 ⇒ y2 = 2x2 +1 ⇒ y là số lẻ
Đặt y = 2k + 1 (với k nguyên).Ta có (2k + 1)2 = 2x2 + 1
⇔ x2 = 2 k2 + 2k ⇒ x chẵn , mà x nguyên tố ⇒ x = 2, y = 3
2: Tìm nghiệm nguyên dương của phương trình
(2x + 5y + 1)(2|x| + y + x2 + x) = 105
Hướng dẫn:
Ta có: (2x + 5y + 1)(2|x| + y + x2 + x) = 105
Ta thấy 105 lẻ ⇒ 2x + 5y + 1 lẻ ⇒ 5y chẵn ⇒ y chẵn
2|x| + y + x2 + x = 2|x| + y + x(x+ 1) lẻ
có x(x+ 1) chẵn, y chẵn ⇒ 2|x| lẻ ⇒ 2|x| = 1 ⇒ x = 0
Thay x = 0 vào phương trình ta được
(5y + 1) ( y + 1) = 105 ⇔ 5y2 + 6y – 104 = 0
⇒ y = 4 hoặc y = ( loại)
Thử lại ta có x = 0; y = 4 là nghiệm của phương trình
b) 2016x -1 = y-2015 - |y-2015|
2016x-1= y-2015-y-2015
2016x-1=0
2016x = 1
suy ra x = 0