K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
17 tháng 6 2021

\(2x^2-y^2+xy-3x+3y-3=0\)

\(\Leftrightarrow2x^2-xy+x+2xy-y^2+y-4x+2y-2=1\)

\(\Leftrightarrow\left(2x-y+1\right)\left(x+y-2\right)=1\)

Từ đây bạn xét bảng giá trị và thu được kết quả cuối cùng là: \(\left(x,y\right)=\left(1,2\right)\).

18 tháng 6 2021

Sao bạn suy ra hay vậy

7 tháng 8 2017

\(\sqrt{2x+1}-\sqrt{3x}=x-1\)

ĐK: \(x\ge0\)

\(\sqrt{2x+1}-\sqrt{3x}=3x-\left(2x+1\right)\)

\(\Leftrightarrow\sqrt{2x+1}-\sqrt{3x}=\left(\sqrt{3x}-\sqrt{2x+1}\right)\left(\sqrt{3x}+\sqrt{2x+1}\right)\)

\(\Leftrightarrow\left(\sqrt{2x+1}-\sqrt{3x}\right)\left(1+\sqrt{3x}+\sqrt{2x+1}\right)=0\)

\(\Leftrightarrow\sqrt{2x+1}=\sqrt{3x}\Rightarrow x=1\left(tm\right)\)

7 tháng 8 2017

ai giải hộ mk ý a vs ý c

13 tháng 3 2017

\(ĐK:\)  \(x,y,z\in Z^+\)

Không mất tính tổng quát, ta giả sử  \(1\le x\le y\le z\)  nên từ pt đã cho suy ra 

\(20\ge3x^2+x^3\ge3+x^3\)  

\(\Rightarrow\) \(x^3\le17\)  hay nói cách khác  \(x\le2\)  nên kết hợp với điều kiện ở trên suy ra  \(x\in\left\{1;2\right\}\)

Ta xét các trường hợp sau đây:

\(\Omega_1:\)

13 tháng 3 2017

Bạn xét các trường hợp và đưa ra nghiệm chính xác là  \(\left(x,y,z\right)=\left(2,2,2\right)\)