K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 1 2017

1. \(x\left(y-4\right)=35-5\left(y-4\right)\) với y= 4 không phải nghiệm y khác 4

\(x=\frac{35}{y-4}-1\)

y=4+35/n

x=n-1

\(\hept{\begin{cases}n=\left\{-7,-5,-1,1,5,7\right\}\\y=\left\{-1,-3,-31,39,11,9\right\}\\x=n-1=\left\{-8,-6,-2,0,4,6\right\}\end{cases}}\)

2.x^2+x+6=y^2

4x^2+4x+1=4y^2-23

(2x+1)^2=4y^2-23

=>4y^2-23=t^2

(2y)^2-t^2=23

=>\(\hept{\begin{cases}y=+-6\\t=+-11\end{cases}\Rightarrow\hept{\begin{cases}2x+1=11\\2x+1=-11\end{cases}\Rightarrow}\hept{\begin{cases}x=5\\x=-6\end{cases}}}\)

24 tháng 7 2019

Khó phết chứ chả đùa

24 tháng 7 2019

Bài 1:

1.Đặt \(A=x^2+y^2-3x+2y+3\)

\(=x^2-2.x.\frac{3}{2}+\frac{9}{4}-\frac{9}{4}+y^2+2y+1+2\)

\(=\left(x-\frac{3}{2}\right)^2+\left(y+1\right)^2-\frac{9}{4}+2\)

\(=\left(x-\frac{3}{2}\right)^2+\left(y+1\right)^2-\frac{1}{4}\)

Vì \(\hept{\begin{cases}\left(x-\frac{3}{2}\right)^2\ge0;\forall x\\\left(y+1\right)^2\ge0;\forall y\end{cases}}\)

\(\Rightarrow\left(x-\frac{3}{2}\right)^2+\left(y+1\right)^2\ge0;\forall x,y\)

\(\Rightarrow\left(x-\frac{3}{2}\right)^2+\left(y+1\right)^2-\frac{1}{4}\ge0-\frac{1}{4};\forall x,y\)

Hay \(A\ge\frac{-1}{4};\forall x,y\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(x-\frac{3}{2}\right)^2=0\\\left(y+1\right)^2=0\end{cases}}\)

                       \(\Leftrightarrow\hept{\begin{cases}x=\frac{3}{2}\\y=-1\end{cases}}\)

VẬY MIN A=\(\frac{-1}{4}\)\(\Leftrightarrow\hept{\begin{cases}x=\frac{3}{2}\\y=-1\end{cases}}\)

20 tháng 3 2018

\(\left(x^2+x\right)^2+4\left(x^2+x\right)=12\)

đặt \(\left(x^2+x\right)=t\)  ta có 

\(t^2+4t-12=0\)

\(\Leftrightarrow t^2+6t-2t-12=0\)

\(\Leftrightarrow t\left(t+6\right)-2\left(t+6\right)=0\)

\(\Leftrightarrow\left(t-2\right)\left(t+6\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}t-2=0\\t+6=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}t=2\\t=-6\end{cases}}\)

khi đó giả lại biến \(\left(x^2+x\right)\) rồi làm như bình thường 

23 tháng 10 2016

A = x(x + y)2 - x(x - y)

= x[(x + y)2 - (x - y)]

B = (2x - 3)(4x2 + 6x + 9) - (2x + 3)(4x2 - 6x + 9)

= 8x3 - 27 - 8x3 - 27

= - 54

C = (x + 3)3 - (x - 3)3 - 18x2 - 18

= x3 + 9x2 + 27x + 27 - x3 + 9x2 - 27x + 27 - 18x2 - 18

= 36

20 tháng 7 2017

\(\frac{x+3}{x-3}-\frac{x-3}{x+3}=\frac{12}{x^2-9}\)

\(\Leftrightarrow\frac{x+3}{x-3}-\frac{x-3}{x+3}=\frac{12}{\left(x-3\right)\left(x+3\right)}\)

\(\Leftrightarrow\frac{\left(x+3\right)^2-\left(x-3\right)^2}{\left(x-3\right)\left(x+3\right)}=\frac{12}{\left(x-3\right)\left(x+3\right)}\)

\(\Rightarrow\left(x+3\right)^2-\left(x-3\right)^2=12\)

\(\Leftrightarrow x^2+6x+9-\left(x^2-6x+9\right)=12\)

\(\Leftrightarrow x^2+6x+9-x^2+6x-9=12\)

\(\Leftrightarrow12x=12\)

\(\Rightarrow x=1\)

20 tháng 7 2017

\(\frac{x+3}{x-3}-\frac{x-3}{x+3}=\frac{12}{x^2-9}.\)

\(\Leftrightarrow\frac{\left(x+3\right)^2}{x^2-9}-\frac{\left(x-3\right)^2}{x^2-9}=\frac{12}{x^2-9}\)

\(\Leftrightarrow\left(x+3\right)^2-\left(x-3\right)^2=12\)

\(\Leftrightarrow x^2+6x+9-\left(x^2-6x+9\right)=12\)

\(\Leftrightarrow x^2+6x+9-x^2+6x-9=12\)

\(\Leftrightarrow12x=12\)

\(\Leftrightarrow x=1\)