Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có: \(5x^4+10x^2+2y^6+4y^3-6=0\)
<=> \(5\left(x^4+2x^2+1\right)+2\left(y^6+2y^3+1\right)=13\)
<=> \(5\left(x^2+1\right)^2+2\left(y^3+1\right)^2=13\)
Vì x, y nguyên => \(\left(x^2+1\right)^2;\left(x^3+1\right)^2\)là số chính phương
=> \(x^2+1=1\)
và \(y^3+1=2\)
Khi đó: \(\hept{\begin{cases}x=0\\y=1\end{cases}}\)thử lại thỏa mãn.
a) \(x^3-2x^2-5x+6=0\)
\(x^3-x^2-x^2+x-6x+6=0\)
\(x^2\left(x-1\right)-x\left(x-1\right)-6\left(x-1\right)=0\)
\(\left(x-1\right)\left(x^2-x-6\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-1=0\\x^2-x-6=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=1\\x^2-2x+3x-6=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=1\\\left(x+3\right)\left(x-2\right)=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=1\\x=\left\{2;-3\right\}\end{cases}}\)
\(a,x^3-2x^2-5x+6=0\)
\(\Leftrightarrow\left(x^3-x^2\right)-\left(x^2-x\right)-\left(6x-6\right)=0\)
\(\Leftrightarrow x^2\left(x-1\right)-x\left(x-1\right)-6\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^2-x-6\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left[\left(x^2-3x\right)+\left(2x-6\right)\right]=0\)
\(\Leftrightarrow\left(x-1\right)\left[x\left(x-3\right)+2\left(x-3\right)\right]=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left(x-3\right)=0\)
\(\Leftrightarrow x-1=0\left(h\right)x+2=0\left(h\right)x-3=0\)
\(\Leftrightarrow x=1\left(h\right)x=-2\left(h\right)x=3\)
Vậy \(x\in\left\{-2;1;3\right\}\)
P/S: (h) là hoặc nhé
\(2x^4-2x^2y+y^2-64=0.\)
\(x^4+x^4-2x^2y+y^2-64=0.\)
\(\left(x^4-2x^2y+y^2\right)+x^4-64=0.\)
\(\left(x^2-y\right)^2+x^4-64=0.\)
\(\left(x^2-y\right)^2+x^4=64.\)
Có \(\left(x^2-y\right)^2\ge0\)
mafk \(\left(x^2-y\right)^2+x^4=64.\)
\(\Rightarrow x^4\le64.\)
\(\Rightarrow x^2\le8\)
Từ đó xét tiếp
VT sẽ được phân tích thành
\(\left(y-x\right)\left(y+x\right)\left(2y-x\right)\left(2y+x\right)\left(3y+x\right)=33\)
Nếu x,y là các số nguyên =>VT là tích của 5 số nguyên, mà 33 chỉ là tích của nhiều nhất là 4 số nguyên => vô lí=> PT k có nghiệm nguyên
^_^
2.tự vẽ hình
a)Gọi O là giao điểm của hai đường chéo=>OD=OB(t/c)
Xét tgv OFD và tgv OEB có:
\(\widehat{FOD}=\widehat{EOB}\left(\text{đ}\text{ối}\text{đ}\text{ỉnh}\right)\)
\(DO=BO\left(cmt\right)\)
=> tgv OFD = tgv OEB (cgv-gn)
=> DF=BE
Mà DF//BE ( cùng vg với AC)
=> tg DEBF là hbn ( có cặp cạnh đối // và bằng nhau)
b) Ta có : \(\widehat{ADC}=\widehat{ABC}\)(hai góc so le trong)
\(\Rightarrow\widehat{CDK}=\widehat{CBH}\)
Xét tg CKD và tg CHB có :
\(\widehat{CDK}=\widehat{CBH}\)
\(\widehat{DKC}=\widehat{BHC}\left(=90\text{đ}\text{ộ}\right)\)
=> tg CKD = tg CHB (g.g)
\(\Rightarrow\frac{CK}{CD}=\frac{CH}{CB}\Rightarrow CD\cdot CH=CK\cdot CB\)
c) Xét tg ABE và tg AHC có :
\(\widehat{AEB}=\widehat{AHC}\)
\(\widehat{A}:chung\)
=> tg ABE đồng dạng tg AHC (g.g)
\(\Rightarrow\frac{AB}{AC}=\frac{AE}{AH}\Rightarrow AB\cdot AH=AC\cdot AE\)(1)
Xét tg ADF và tg ACK có :
\(\widehat{A}:chung\)
\(\widehat{\text{AF}D}=\widehat{AKC}\)
=> tg ADF đồng dạng tg ACK
\(\Rightarrow\frac{AD}{AC}=\frac{\text{AF}}{AK}\Rightarrow AD\cdot AK=AC\cdot\text{AF}\)(2)
Xét tgv AFD và tgv CEB có :
AD=BC(gt)
DF=BE(cmt)
=> tg AFD=tg CEB (ch-cgv)
=> AF=CE (3)
Từ (1); (2); (3) ta có :
\(AB\cdot AH+AD\cdot AK=AC\left(AE+\text{AF}\right)=AC\left(AE\cdot CE\right)=AC^2\)
\(\Leftrightarrow5\left(x^4+2x^2+1\right)+2\left(y^6+2y^3+1\right)=13\)
\(\Leftrightarrow5\left(x^2+1\right)^2+2\left(y^3+1\right)^2=13\)
\(\Leftrightarrow\left(x^2+1\right)^2=\dfrac{13-2\left(y^3+1\right)^2}{5}\le\dfrac{13}{5}< 4\)
\(\Rightarrow x^2+1< 2\Rightarrow x^2< 1\)
\(\Leftrightarrow x=0\)
\(\Rightarrow y^6+2y^3-3=0\Rightarrow\left[{}\begin{matrix}y^3=1\Rightarrow y=1\\y^3=-3\left(ktm\right)\end{matrix}\right.\)
Vậy \(\left(x;y\right)=\left(0;1\right)\)
Vì sao 13/5 < 4 ạ?