K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 8 2019

\(\Leftrightarrow x^2+y^2+1+2x+2y+2xy=3\left(x^2+y^2+1\right)\)

\(\Leftrightarrow2x^2+2y^2+2-2x-2y-2xy=0\)

\(\Leftrightarrow\left(x^2-2x+1\right)+\left(y^2-2y+1\right)+\left(x^2+y^2-2xy\right)=0\)

\(\Leftrightarrow\left(x-1\right)^2+\left(y-1\right)^2+\left(x-y\right)^2=0\)

\(\Leftrightarrow x=y=1\)

4 tháng 1 2017

a)\(3^x-y^3=1\)

  • Nếu x<0 suy ra y không nguyên
  • Nếu x=0 => y=0
  • Nếu x=1 =>y không nguyên
  • Nếu x=2 =>y=2
  • Nếu x>2 \(pt\Rightarrow3^x=y^3+1\left(x>2\right)\Rightarrow y^3>9\)

Ta suy ra \(y^3+1⋮9\Rightarrow y^3:9\) dư -1

\(\Rightarrow y=9k+2\) hoặc \(y=9k+5\) hoặc \(y=9k+8\) (k nguyên dương) (1)

Mặt khác ta cũng có \(y^3+1⋮3\) nên \(y=3m+2\) (m nguyên dương)

Từ (1) và (2) suy ra vô nghiệm

Vậy pt có 2 nghiệm nguyên là (0;0) và (2;2)

b)Xét .... ta dc x=y=0 hoặc x=1 và y=2

c)Xét.... x=y=0 hoặc x=0 và y=-1 hoặc x=-1 và y=0 hoặc x=y=-1

8 tháng 5 2018

chuyển vế ta có:

\(x^2-2xy+2y^2-2x-1=x^2-2x\left(y+1\right)+2y^2-1\)

tinh penta ta có:

\(penta'=\left(y+1\right)^2-\left(2y^2-1\right)=-y^2+2y+2=-\left(y+1\right)^2+3\)

để pt có nghiệm nguyên thi penta' phai lon hon hoac bang 0

co penta' nho hon hoac bang 3

từ 2 điều trên ta có: 0 nho hon hoac bang penta' <3

theo penta' ta có \(x_1=y+1-\sqrt{-\left(y+1\right)^2+3}\)

\(x_2=y+1+\sqrt{-\left(y+1\right)^2+3}\)\

mà x nguyên, y nguyên nên ta có: 

\(\sqrt{-\left(y+1\right)^2+3}thuocZ\) =>\(-\left(y+1\right)^2+3\) la SCP

ma 0 nho hon hoac bang \(-\left(y+1\right)^2+3\) <3

=>\(-\left(y+1\right)^2+3\) =0 hoặc =1

, nếu trường hợp nào cho cả 2 nghiệm x,y nguyên thì chọn

8 tháng 5 2018

PT\(\Leftrightarrow x^2-2xy+2y^2=2x+2\)

\(\Leftrightarrow\left(x^2-2xy+y^2\right)+y^2-2x=2\)

\(\Leftrightarrow\left(x-y\right)^2-2\left(y-x\right)+1+y^2-2y+1=4\)

\(\Leftrightarrow\left(x-y-1\right)^2+\left(y-1\right)^2=4\)

Do x,y nguyên => Các hạng tử là số CP

Ta có các trường hợp 

(y-1)204
(x-y-1)240

+) (y-1)2=0 

=> y= 1 

=> x= 0 hoặc 4

+) (y-1)2=4

=> y= -1 hoặc 3

=> (x;y)= (2;-1);(4;3)

8 tháng 10 2017

ta có : \(x\left(x^2+x+1\right)=4y\left(y+1\right)\)

<=>\(x^3+x^2+x+1=4y^2+4y+1\)

<=>\(\left(x^2+1\right)\left(x+1\right)=\left(2y+1\right)^2\)

ta thấy : \(x^2+1\) và \(x+1\) cùng  tính  chẵn lẻ.Mà \(\left(2y+1\right)^2\) là bình phương của 1 số lẻ nên \(x^2+1\) và \(x+1\) cùng lẻ => x chẵn

mặt khác: tích \(\left(x^2+1\right)\left(x+1\right)\) là 1 số chính phương lẻ =>\(x^2+1=x+1\)

                     <=>\(x^2=x\) <=> x(x-1)=0 \(\Rightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\)

mà x là số chẵn nên x=0 => 4y(y+1)=0 \(\Rightarrow\orbr{\begin{cases}y=0\\y+1=0\end{cases}\Rightarrow\orbr{\begin{cases}y=0\\y=-1\end{cases}}}\)

vậy nghiệm của phương trình là : (x;y)={ (0;0) ; (0;-1)}

29 tháng 1 2019

Tại sao lại suy ra x2+1=x+1. Mình không hiểu chỗ đó giải thích cho mình với

25 tháng 5 2017


Nếu x=0, y =1, -1 
-Nếu x khác 0, 
- Nếu x lẻ, cộng 2 vế với 1 
x^3 + x^2 + x + 1 = 4y^2 + 4y + 1 
<=> (x^2 + 1)(x + 1) = (2y + 1)^2 
x lẻ 
x^2 + 1 chẵn 
x + 1 chẵn 
=> VT chẵn mà VP luôn lẻ => loại TH x lẻ 

Xét x chẵn  =>....tui thấy trên mạng nó lm tek này,,nhưng mà TH chẵn nó lm sai,,,

Vậy pt có 2 cặp nghiệm nguyên (0,1) và (0,-1)

25 tháng 5 2017

mik ko pic