K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 7 2019

\(x^3-y^3=xy+61\)

\(\Leftrightarrow27x^3-27y^3-27xy-1=1646\)

\(\Leftrightarrow\left(3x\right)^3+\left(-3y\right)^3+\left(-1\right)^3-3.3x.\left(-3y\right).\left(-1\right)=1646\)

Áp dụng hđt sau \(a^3+b^3+c^3-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)đc

\(\left(3x-3y-1\right)\left(9x^2+9y^2+1+9xy-3y+3x\right)=1646\)

CÓ \(1646=1.1646=2.823\)

Mà \(\hept{\begin{cases}3x-3y-1< 9x^2+9y^2+1+9xy-3y+3x\\3x-3y-1\equiv2\left(mod3\right)\end{cases}}\)

\(\Rightarrow3x-3y-1=2\)

\(\Rightarrow x=y+1\)

THay vào đề bài

\(\left(y+1\right)^3-y^3=\left(y+1\right)y+61\)

\(\Leftrightarrow y^2+y-30=0\)

\(\Leftrightarrow\orbr{\begin{cases}y=5\left(tm\right)\\y=-6\left(loai\right)\end{cases}}\)

VỚi y = 5 thì x = y +  1 = 6

6 tháng 9 2016

\(x^2+y^2=3-xy\)

\(\Leftrightarrow\left(x-y\right)^2=3\left(1-xy\right)\)

\(\Leftrightarrow x-y=3\) và \(1-xy=3\)

\(\Leftrightarrow\left(x;y\right)=\left(1;-2\right),\left(2;-1\right);\left(-1;2\right);\left(-2;1\right)\)

hoặc : \(x-y=0\) và \(1-xy=0\)

\(\Leftrightarrow\left(x;y\right)=\left(1;1\right)\left(-1;-1\right)\)

8 tháng 1 2017

ban oi tai sao den buoc 3 ban lai suy ra nhu vay duoc

4 tháng 2 2017

coi như ẩn x

\(\left(2x+y\right)^2+3y^2=12\)

=> !y!<=2

vai trò x, y như nhau

với  y=0=> vô nghiệm nguyên 

với y=-1=> x=2

với y=1=> x=-2

(x,y)=(-2,1);(2,-1);(1,-2);(-1,2)

4 tháng 2 2017

cái !y! là dấu GTTĐ à?

19 tháng 5 2021

sửa lại đề bài : Tìm nghiệm nguyên dương 

22 tháng 11 2019

Ta có x2 –xy + y2 = 3 ⇔ (x- \displaystyle \frac{y}{2})2 = 3 – \displaystyle \frac{3y_{{}}^{2}}{4}

Ta thấy (x- \displaystyle \frac{y}{2})2 = 3 – \displaystyle \frac{3y_{{}}^{2}}{4} ≥ 0

⇒ -2 ≤ y ≤ 2

⇒ y= ± 2; ±1; 0 thay vào phương trình tìm x

Ta được các nghiệm  nguyên của phương trình là :

(x, y) = (-1,-2), (1, 2); (-2, -1); (2,1) ;(-1,1) ;(1, -1)

21 tháng 3 2020

add me
 

em ms hok lóp 7 thui một năm nữa em sẽ giúp nhá sorry zery much

11 tháng 2 2016

Ta có:

\(x^2+xy+y^2=3\)  \(\left(\text{*}\right)\)  

\(\Leftrightarrow\)  \(x^2+2.x.\frac{y}{2}+\frac{y^2}{4}+\frac{3y^2}{4}=3\)

\(\Leftrightarrow\)  \(\left(x+\frac{y}{2}\right)^2=3-\frac{3y^2}{4}\)

Vì  \(\left(x+\frac{y}{2}\right)^2\ge2\)  nên  \(3-\frac{3y^2}{4}\ge0\) , suy ra  \(-2\le y\le2\) , tức là  \(y\in\left\{-2;-1;0;1;2\right\}\)

Lần lượt thay các giá trị  \(y\in\left\{-2;-1;0;1;2\right\}\)  vào  \(\left(\text{*}\right)\) , ta lần lượt tìm được các nghiệm là 

\(\left(x;y\right)=\left\{\left(1;-2\right),\left(-1;-1\right),\left(2;-1\right),\left(-2;1\right),\left(1;1\right),\left(-1;2\right)\right\}\)  (thỏa mãn  \(x,y\in Z\) )