Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tui vừa trả lời 3 bài này ở câu của Nguyễn Anh Quân
Xem tui giải đúng không nha
Xin Wrecking Ball nhận xét
\(\left(1+x\right)\left(y+z\right)=xyz+2\)
\(\Leftrightarrow\)\(xy+xz+y+z=xyz+2\)
\(\Leftrightarrow\)\(xyz-xy-xz+x=y+z-2+x\)
\(\Leftrightarrow\)\(x\left(yz-y-z+1\right)=x+y+z-2\)
\(\Leftrightarrow\)\(x\left(y-1\right)\left(z-1\right)=x+\left(y-1\right)+\left(z-1\right)\)
Đặt \(a=x;b=y-1;c=z-1\) pt \(\Leftrightarrow\)\(abc=a+b+c\)
Ta có : \(a\ge1;b\ge0;c\ge0\) ( do \(x,y,z\ge1\) )
Giả sử \(b=0\) pt \(\Leftrightarrow\)\(a+c=0\) ( vô lí vì \(a+c\ge1\) )
Tương tự, giả sử \(c=0\) pt \(\Leftrightarrow\)\(a+b=0\) ( vô lí vì \(a+b\ge1\) )
\(\Rightarrow\)\(a,b,c\ge1\) và \(abc=a+b+c\)
Đến đây giả sử \(a\ge b\ge c\) đc r vì a, b, c có vai trò như nhau
Giải r nhưng quên link, có j e ib gửi link khác cho :))
Chúc a học tốt ~
Do vai trò của x,y,z là như nhau nen giả sử z ≥ y ≥ x ≥ 1
Ta sẽ thử trực tiếp một vài trường hợp:
Nếu x = 1 thì 1/y + 1/z = 0 ( vô nghiệm)
Nếu x = 2 thì 1/y + 1/z = 1/2 <=> 2y + 2z = yz <=> (y - 2)(z - 2) = 4
Mà :0 ≤ y - 2 ≤ z - 2 và (y- 2), (z - 2) phải là ước của 4
Do đó ta có các trường hợp:
{ y - 2 = 1```````{ y = 3
{ z - 2 = 4 <=>{ z = 6
{ y- 2 = 2````````{ y = 4
{ z - 2 = 2 <=>{ z = 4
Nếu x = 3 thì 1/y + 1/z = 2/3
+ Nếu y = 3 thì z = 3
+ Nều y ≥ 4 thì 1/y + 1/z ≤ 1/4 + 1/4 = 1/2 < 1/3
=> phương trình vô nghiệm
Nếu x = 4 thì 1/x + 1/y + 1/z ≤ 1/4 + 1/4 + 1/4 = 3/4 < 1
=>pt vô nghiệm
Vậy tóm lại phương trình đã cho có 10 nghiệm (bạn tự liệt kê)
Giả sử \(z\ge y\ge x\)
\(\frac{1}{2}=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{3}{x}\Rightarrow x\le6\)
xét các TH
( còn 2 biến làm tườn tự )
Xem có sai đè k bạn.