Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Ta có : \(\frac{2x-1}{5}-\frac{x-2}{3}=\frac{x+7}{15}\)
=> \(\frac{3\left(2x-1\right)}{15}-\frac{5\left(x-2\right)}{15}=\frac{x+7}{15}\)
=> \(3\left(2x-1\right)-5\left(x-2\right)=x+7\)
=> \(6x-3-5x+10-x-7=0\)
=> \(0=0\)
Vậy phương trình có vô số nghiệm .
b, Ta có : \(\frac{x+3}{2}-\frac{x-1}{3}=\frac{x+5}{6}+1\)
=> \(\frac{3\left(x+3\right)}{6}-\frac{2\left(x-1\right)}{6}=\frac{x+5}{6}+\frac{6}{6}\)
=> \(3\left(x+3\right)-2\left(x-1\right)=x+5+6\)
=> \(3x+9-2x+2-x-5-6=0\)
=> \(0=0\)
Vậy phương trình có vô số nghiệm .
c, Ta có : \(\frac{2\left(x+5\right)}{3}+\frac{x+12}{2}-\frac{5\left(x-2\right)}{6}=\frac{x}{3}+11\)
=> \(\frac{4\left(x+5\right)}{6}+\frac{3\left(x+12\right)}{6}-\frac{5\left(x-2\right)}{6}=\frac{2x}{6}+\frac{66}{6}\)
=> \(4\left(x+5\right)+3\left(x+12\right)-5\left(x-2\right)=2x+66\)
=> \(4x+20+3x+36-5x+10-2x-66=0\)
=> \(0=0\)
Vậy phương trình có vô số nghiệm .
1.
\(\frac{2x+3}{4}-\frac{5x+3}{6}=\frac{3-4x}{12}\)
\(MC:12\)
Quy đồng :
\(\Rightarrow\frac{3.\left(2x+3\right)}{12}-\left(\frac{2.\left(5x+3\right)}{12}\right)=\frac{3x-4}{12}\)
\(\frac{6x+9}{12}-\left(\frac{10x+6}{12}\right)=\frac{3x-4}{12}\)
\(\Leftrightarrow6x+9-\left(10x+6\right)=3x-4\)
\(\Leftrightarrow6x+9-3x=-4-9+16\)
\(\Leftrightarrow-7x=3\)
\(\Leftrightarrow x=\frac{-3}{7}\)
2.\(\frac{3.\left(2x+1\right)}{4}-1=\frac{15x-1}{10}\)
\(MC:20\)
Quy đồng :
\(\frac{15.\left(2x+1\right)}{20}-\frac{20}{20}=\frac{2.\left(15x-1\right)}{20}\)
\(\Leftrightarrow15\left(2x+1\right)-20=2\left(15x-1\right)\)
\(\Leftrightarrow30x+15-20=15x-2\)
\(\Leftrightarrow15x=3\)
\(\Leftrightarrow x=\frac{3}{15}=\frac{1}{5}\)
b, \(\frac{1}{x-1}-\frac{5}{x-2}=\frac{15}{\left(x+1\right)\left(2-x\right)}\left(ĐKXĐ:x\ne\pm1;x\ne2\right)\)
\(\Leftrightarrow\)\(\frac{1}{x-1}+\frac{5}{2-x}=\frac{15}{\left(x+1\right)\left(2-x\right)}\)
\(\Leftrightarrow\)\(\frac{\left(x+1\right)\left(2-x\right)+5\left(x-1\right)\left(x+1\right)}{\left(x+1\right)\left(2-x\right)\left(x-1\right)}=\frac{15\left(x-1\right)}{\left(x-1\right)\left(x+1\right)\left(2-x\right)}\)
Suy ra:
\(\Leftrightarrow\)(x+1)(2-x)+5(x-1)(x+1) = 15(x-1)
\(\Leftrightarrow\)2x-x2-x+2+5x2-5 = 15x-15
\(\Leftrightarrow\)2x-x2-x+5x2-15x = -15+5-2
\(\Leftrightarrow\)4x2-14x = -12
\(\Leftrightarrow4x^2-14x+12=0\)
\(\Leftrightarrow4x^2-8x-6x+12=0\)
\(\Leftrightarrow\)4x(x-2) - 6(x-2) = 0
\(\Leftrightarrow\left(x-2\right)\left(4x-6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\4x-6=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\left(kotm\right)\\x=\frac{3}{2}\left(tm\right)\end{matrix}\right.\)
Vậy pt có nghiệm duy nhất x = \(\frac{3}{2}\)
a, x( x - 1) = x ( x + 2)
<=> x2 - x = x2 + 2x
<=> x2 - x - x2 - 2x = 0
<=> -3x = 0
<=> x = 0
b, tương tự câu a
c,\(\Leftrightarrow\frac{3x-3}{4}=2-\frac{x-2}{8}\)
\(\Leftrightarrow\frac{\left(3x-3\right)2}{8}=\frac{16}{8}-\frac{x-2}{8}\)
\(\Leftrightarrow\frac{6x-6}{8}=\frac{16}{8}-\frac{x-2}{8}\)
=> 6x - 6 = 16 - x + 2
<=> 6x + x = 16 + 2 + 6
<=> 7x = 24
<=> x=\(\frac{24}{7}\)
Các câu còn lại làm tương tự
a) ĐKXĐ: \(x\ne-1;x\ne2\)
Ta có: \(\frac{1}{x+1}-\frac{5}{x-2}=\frac{15}{\left(x+1\right)\left(2-x\right)}\)
⇔\(\frac{1}{x+1}-\frac{5}{x-2}+\frac{15}{\left(x+1\right)\left(x-2\right)}=0\)
⇔\(\frac{x-2}{\left(x+1\right)\left(x-2\right)}-\frac{5\left(x+1\right)}{\left(x-2\right)\left(x+1\right)}+\frac{15}{\left(x+1\right)\left(x-2\right)}=0\)
⇔\(x-2-5x-5+15=0\)
⇔\(-4x+8=0\)
⇔\(-4x=-8\)
⇔\(x=\frac{-8}{-4}=2\)(loại)
Vậy: x không có giá trị
b) ĐKXĐ: \(x\ne0;x\ne\frac{3}{2}\)
Ta có: \(\frac{1}{2x-3}-\frac{3}{x\left(2x-3\right)}=\frac{5}{x}\)
⇔\(\frac{x}{\left(2x-3\right)\cdot x}-\frac{3}{x\left(2x-3\right)}-\frac{5\left(2x-3\right)}{x\left(2x-3\right)}=0\)
⇔\(x-3-10x+15=0\)
⇔\(-9x+12=0\)
⇔\(-9x=-12\)
⇔\(x=\frac{-12}{-9}=\frac{4}{3}\)
Vậy: \(x=\frac{4}{3}\)
c) ĐKXĐ:\(x\ne3;x\ne1\)
Ta có: \(\frac{6}{x-1}-\frac{4}{x-3}=\frac{8}{2x-6}\)
⇔\(\frac{6}{x-1}-\frac{4}{x-3}=\frac{8}{2\left(x-3\right)}\)
⇔\(\frac{6}{x-1}-\frac{4}{x-3}=\frac{4}{x-3}\)
⇔\(\frac{6}{x-1}-\frac{4}{x-3}-\frac{4}{x-3}=0\)
⇔\(\frac{6}{x-1}-\frac{8}{x-3}=0\)
⇔\(\frac{6\left(x-3\right)}{\left(x-1\right)\left(x-3\right)}-\frac{8\left(x-1\right)}{\left(x-3\right)\left(x-1\right)}=0\)
⇔\(6\left(x-3\right)-8\left(x-1\right)=0\)
⇔6x-18-8x+8=0
⇔-2x-10=0
⇔-2(x+5)=0
Vì 2≠0 nên x+5=0
hay x=-5
Vậy: x=-5
\(\frac{x^2+5}{25-x^2}=\frac{3}{x+5}+\frac{x}{x-5}\)
\(\Leftrightarrow\frac{x^2+5}{\left(5-x\right)\left(5+x\right)}=\frac{3}{5+x}-\frac{x}{5-x}\)
\(\Leftrightarrow\frac{x^2+5}{\left(5-x\right)\left(5+x\right)}=\frac{3\left(5-x\right)-x\left(5+x\right)}{\left(5-x\right)\left(5+x\right)}\)
\(\Rightarrow x^2+5=3\left(5-x\right)-x\left(5+x\right)\)
\(\Leftrightarrow x^2+5=15-3x-5x-x^2\)
\(\Leftrightarrow15-3x-5x-x^2-x^2-5=0\)
\(\Leftrightarrow10-8x-2x^2=0\)
\(\Leftrightarrow2x^2+8x-10=0\)
\(\Leftrightarrow2\left(x^2+4x-5\right)=0\)
\(\Leftrightarrow2\left(x^2+5x-x-5\right)=0\)
\(\Leftrightarrow x^2-x+5x-5=0\)
\(\Leftrightarrow x\left(x-1\right)+5\left(x-1\right)=0\Leftrightarrow\left(x-1\right)\left(x+5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x+5=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x=-5\end{cases}}}\)