K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 3 2021

đẽ vãi

10 tháng 7 2016

can tui giup k

5 tháng 6 2017

đầu tiên tính pen -ta >0 r suy ra điều kiện

phần tính  \(x^3+x_2^3=1\)theo hằng đẳng thức.r bạn sẽ ra thôi. cố lên

5 tháng 6 2017

\(x_1^3+x_2^3=\left(x1+x2\right)\left(\left(x1+x2\right)^2-3xy\right)\)

Bạn thay x1.x2 và x1+x2 theo m vào là tìm đc m

~ Có thể mai sau tôi sẽ ko giàu có, ko mồm mép nhưng tôi sẽ cố gắng hết sức để có đc những thứ đó.~ 

Chung quy lại là CHÁN

28 tháng 2 2019

1, 

a) \(x^2-4x+m=0\)

\(\Delta=b^2-4ac=\left(-4\right)^2-4.1.m=16-4m\)

Để pt có nghiệm : \(\Delta\ge0\)

<=>\(16-4m\ge0\)

\(\Leftrightarrow16\ge4m\)

\(\Leftrightarrow m\le4\)

24 tháng 4 2020

a) Thay \(m=3\)vào phương trình ta được phương trình mới là: \(x^2-6x+4=0\)

Ta có: \(\Delta=\left(-6\right)^2-4.1.4=36-16=20>0\)

\(\Rightarrow\)Phương trình có 2 nghiệm phân biệt :

\(x_1=\frac{-\left(-6\right)+\sqrt{20}}{2}=\frac{6+2\sqrt{5}}{2}=\frac{2\left(3+\sqrt{5}\right)}{2}=3+\sqrt{5}\)

\(x_2=\frac{-\left(-6\right)-\sqrt{20}}{2}=\frac{6-2\sqrt{5}}{2}=\frac{2\left(3-\sqrt{5}\right)}{2}=3-\sqrt{5}\)

Vậy với \(m=3\)thì phương trình có tập nghiệm là: \(S=\left\{3-\sqrt{5};3+\sqrt{5}\right\}\)

b) Để phương trình có 2 nghiệm thì \(\left(-2m\right)^2>4.1.4\)

\(\Leftrightarrow4m^2>16\)\(\Leftrightarrow m^2>4\)\(\Leftrightarrow\orbr{\begin{cases}m< -2\\m>2\end{cases}}\)

Vậy để phương trình có 2 nghiệm thì \(m< -2\)hoặc \(m>2\)