K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
12 tháng 2 2018

Lời giải:

\(\left\{\begin{matrix} x+\frac{1}{y}=2(1)\\ y+\frac{1}{z}=2(2)\\ z+\frac{1}{x}=2(3)\end{matrix}\right.\)

Lấy \((1)-(2); (2)-(3); (3)-(1)\) ta thu được:

\(\left\{\begin{matrix} x-y+\frac{z-y}{yz}=0\\ y-z+\frac{x-z}{xz}=0\\ z-x+\frac{y-x}{xy}=0\end{matrix}\right.\) \(\Leftrightarrow \left\{\begin{matrix} x-y=\frac{y-z}{yz}\\ y-z=\frac{z-x}{xz}\\ z-x=\frac{x-y}{xy}\end{matrix}\right.\)

\(\Rightarrow (x-y)(y-z)(z-x)=\frac{(x-y)(y-z)(z-x)}{(xyz)^2}\)

\(\Leftrightarrow (x-y)(y-z)(z-x)(1-\frac{1}{xyz})(1+\frac{1}{xyz})=0\)

TH1: \(x-y=0\Leftrightarrow x=y\Rightarrow x+\frac{1}{x}=2\)

\(\Rightarrow x^2-2x+1=0\Leftrightarrow (x-1)^2=0\Leftrightarrow x=1\rightarrow y=1\)

Thay vào PT\((2)\Rightarrow 1+\frac{1}{z}=2\rightarrow z=1\)

Ta thu được \((x,y,z)=(1,1,1)\)

TH2: \(y-z=0; z-x=0\) hoàn toàn giống TH1 ta cũng có \((x,y,z)=(1,1,1)\)

TH3: \(1-\frac{1}{xyz}=1\Rightarrow xyz=1\)

Thay vào PT(1) và (2)

\(\left\{\begin{matrix} x+\frac{1}{y}=2\\ y+xy=2\end{matrix}\right.\Rightarrow \left\{\begin{matrix} xy+1=2y\\ xy=2-y\end{matrix}\right.\)

\(\Rightarrow 2-y+1=2y\Leftrightarrow y=1\Rightarrow x=z=1\)

TH4: \(1+\frac{1}{xyz}=0\Leftrightarrow xyz=-1\)

Thay vào PT (1) và (2):

\(\left\{\begin{matrix} x+\frac{1}{y}=2\\ y-xy=2\end{matrix}\right.\Rightarrow \left\{\begin{matrix} xy+1=2y\\ xy=y-2\end{matrix}\right.\)

\(\Rightarrow y-2+1=2y\Leftrightarrow y=-1\)

\(\Rightarrow x+\frac{1}{-1}=2\Rightarrow x=3; -1+\frac{1}{z}=2\Rightarrow z=\frac{1}{3}\)

Thử vào PT(3) thấy không đúng (loại)

Vậy \((x,y,z)=(1,1,1)\)

NV
3 tháng 3 2021

c. ĐKXĐ: ...

\(x^2+y^2+2xy-2xy+\dfrac{2xy}{x+y}-1=0\)

\(\Leftrightarrow\left(x+y\right)^2-1-2xy\left(1-\dfrac{1}{x+y}\right)=0\)

\(\Leftrightarrow\left(x+y-1\right)\left(x+y+1\right)-\dfrac{2xy\left(x+y-1\right)}{x+y}=0\)

\(\Leftrightarrow\left(x+y-1\right)\left(x+y+1-\dfrac{2xy}{x+y}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+y=1\\x^2+y^2+x+y=0\left(vô-nghiệm\right)\end{matrix}\right.\)

Thế \(y=1-x\) xuống pt dưới:

\(\sqrt{x+1-x}=x^2-\left(1-x\right)\)

\(\Leftrightarrow x^2+x-2=0\Rightarrow\left[{}\begin{matrix}x=1\Rightarrow y=0\\x=-2\Rightarrow y=3\end{matrix}\right.\)

NV
3 tháng 3 2021

d.

ĐKXĐ: \(x>-2;y>1;x+y>0\)

\(\left\{{}\begin{matrix}\sqrt{\dfrac{x+y}{x+2}}+\sqrt{\dfrac{x+y}{y-1}}=2\\2\left(x+y\right)^2=\left(x+2\right)^2+\left(y-1\right)^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{\dfrac{x+y}{x+2}}+\sqrt{\dfrac{x+y}{y-1}}=2\\\left(\dfrac{x+2}{x+y}\right)^2+\left(\dfrac{y-1}{x+y}\right)^2=2\end{matrix}\right.\)

Đặt \(\left\{{}\begin{matrix}\sqrt{\dfrac{x+y}{x+2}}=a>0\\\sqrt{\dfrac{x+y}{y-1}}=b>0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}a+b=2\\\dfrac{1}{a^4}+\dfrac{1}{b^4}=2\end{matrix}\right.\)

Ta có: \(\dfrac{1}{a^4}+\dfrac{1}{b^4}\ge\dfrac{1}{8}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)^4\ge\dfrac{1}{8}\left(\dfrac{4}{a+b}\right)^4=\dfrac{1}{8}.\left(\dfrac{4}{2}\right)^4=2\)

Dấu "=" xảy ra khi  và chỉ khi \(a=b=1\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x+y}{x+2}=1\\\dfrac{x+y}{y-1}=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=-1\\y=2\end{matrix}\right.\)

22 tháng 2 2018

Cái đề có phải là

\(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=5\\\dfrac{2}{xy}-\dfrac{1}{z^2}=25\end{matrix}\right.????\)

1 tháng 1 2018

HPT \(\Leftrightarrow\left\{{}\begin{matrix}3\left(x^2+y^2\right)+2xy+\dfrac{1}{\left(x-y\right)^2}=20\\\left(x-y\right)+\left(x+y\right)+\dfrac{1}{x-y}=5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2\left(x+y\right)^2+\left(x-y\right)^2+\dfrac{1}{\left(x-y\right)^2}=20\\\left(x-y\right)+\left(x+y\right)+\dfrac{1}{x-y}=5\end{matrix}\right.\)

Đặt \(a=x+y;b=x-y\)

\(\Rightarrow\left\{{}\begin{matrix}2a^2+b^2+\dfrac{1}{b^2}=20\\a+b+\dfrac{1}{b}=5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2a^2+\left(b+\dfrac{1}{b}\right)^2=22\\b+\dfrac{1}{b}=5-a\end{matrix}\right.\)

\(\Rightarrow2a^2+\left(a-5\right)^2=22\)

\(\)Đến đây thì dễ rồi tự làm nhé

a: \(\left\{{}\begin{matrix}\dfrac{2}{x}+\dfrac{3}{y}=5\\\dfrac{1}{x}-\dfrac{4}{y}=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{2}{x}+\dfrac{3}{y}=5\\\dfrac{2}{x}-\dfrac{8}{y}=-6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{11}{y}=11\\\dfrac{1}{x}-\dfrac{4}{y}=-3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=1\\\dfrac{1}{x}=-3+\dfrac{4}{y}=-3+4=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\)

b: \(\left\{{}\begin{matrix}\dfrac{12}{x-3}-\dfrac{5}{y+2}=63\\\dfrac{8}{x-3}+\dfrac{15}{y+2}=-13\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{36}{x-3}-\dfrac{15}{y+2}=189\\\dfrac{8}{x-3}+\dfrac{15}{y+2}=-13\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{44}{x-3}=176\\\dfrac{8}{x-3}+\dfrac{15}{y+2}=-13\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-3=\dfrac{1}{4}\\\dfrac{15}{y+2}=-13-\dfrac{8}{x-3}=-13-32=-45\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{13}{4}\\y=-\dfrac{1}{3}-2=-\dfrac{7}{3}\end{matrix}\right.\)

2 tháng 1 2018

ĐK : \(y\ne0\) Chia cả hai vế của phương trình thứ hai cho y3

\(\Rightarrow x^3+\dfrac{x^2}{y}+\dfrac{x}{y^2}+\dfrac{1}{y^3}=4\)

\(\Leftrightarrow x^2\left(x+\dfrac{1}{y}\right)+\dfrac{1}{y^2}\left(x+\dfrac{1}{y}\right)=4\)

\(\Leftrightarrow\left(x+\dfrac{1}{y}\right)\left(x^2+\dfrac{1}{y^2}\right)=4\)

HPT\(\Leftrightarrow\left\{{}\begin{matrix}x^2+\dfrac{1}{y^2}+x+\dfrac{1}{y}=4\\\left(x+\dfrac{1}{y}\right)\left(x^2+\dfrac{1}{y^2}\right)\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a+b=4\\ab=4\end{matrix}\right.\)

Đến đây tự làm nha

9 tháng 8 2018

1. \(\left\{{}\begin{matrix}x+y+\dfrac{1}{x}+\dfrac{1}{y}=5\\x^2+y^2+\dfrac{1}{x^2}+\dfrac{1}{y^2}=9\end{matrix}\right.\) ĐKXĐ : \(\left\{{}\begin{matrix}x>0\\y>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2y+xy^2+x+y=5xy\\x^4y^2+x^2y^4+x^2+y^2=9x^2y^2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x^4y^2+x^2y^4+x^2+y^2=25x^2y^2\\x^4y^2+x^2y^4+x^2+y^2=9x^2y^2\end{matrix}\right.\)\(\Leftrightarrow0=16x^2y^2\)

\(\Rightarrow\) phương trình vô nghiệm

2 tháng 10 2017

mini của mày chịch nhau à hả cu

2 tháng 10 2017

phắn =="

19 tháng 10 2018

x + y + z = 6 => (x + y + z)2 = 36

=> x2 + y2 + z2 + 2(xy + yz + zx) = 36

=> x2 + y2 + z2 = 36 - 2.12 = 12

=> x2 + y2 + z2 = xy + yz + zx

Ta có VT \(\ge\) VP. Dấu "=" xảy ra <=> x = y = z

Thay vào hệ ta có (x; y; z) = (2; 2; 2)