Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a) $MA,MB$ là tiếp tuyến của $(O)$ nên $MA\perp OA, MB\perp OB$
$\Rightarrow \widehat{MAO}=\widehat{MBO}=90^0$
Tứ giác $MAOB$ có tổng 2 góc đối $\widehat{MAO}+\widehat{MBO}=90^0+90^0=180^0$ nên là tứ giác nội tiếp.
b) Xét tam giác $MAC$ và $MDA$ có:
$\widehat{M}$ chung
$\widehat{MAC}=\widehat{MDA}$ (tính chất góc tạo bởi tiếp tuyến và dây cung bằng góc nội tiếp chắn cung đó)
$\Rightarrow \triangle MAC\sim \triangle MDA$ (g.g)
$\Rightarrow \frac{MA}{MD}=\frac{MC}{MA}\Rightarrow MA^2=MC.MD$
c) Dễ thấy $AB\perp MO$ tại $H$.
Xét tam giác $AMO$ vuông tại $A$ có đường cao $AH$, áp dụng định lý hệ thức lượng trong tam giác vuông:
$MA^2=MH.MO$
Kết hợp kết quả phần b suy ra $MH.MO=MC.MD$
$\Rightarrow CHOD$ là tứ giác nội tiếp.
d) Vận dụng giả thiết $AD\parallel MB$ và tính chất góc tạo bởi tiếp tuyến- dây cung ta có:
$\widehat{MCB}=180^0-\widehat{CMB}-\widehat{CBM}$
$=180^0-\widehat{CDA}-\widehat{CDB}$
$=180^0-\widehat{ADB}=\widehat{ACB}$ (do $ACBD$ là tứ giác nội tiếp)
** Khuyên chân thành các bạn muốn nâng cao xác suất được hỗ trợ thì nên chịu khó gõ đề bằng công thức toán. Chụp hình như này đọc bài rất nản, đặc biệt là hình xoay ngược đọc mỏi cổ lém.
Gọi O là tâm đường tròn \(\Rightarrow\) O là trung điểm BC
\(\stackrel\frown{BE}=\stackrel\frown{ED}=\stackrel\frown{DC}\Rightarrow\widehat{BOE}=\widehat{EOD}=\widehat{DOC}=\dfrac{180^0}{3}=60^0\)
Mà \(OD=OE=R\Rightarrow\Delta ODE\) đều
\(\Rightarrow ED=R\)
\(BN=NM=MC=\dfrac{2R}{3}\Rightarrow\dfrac{NM}{ED}=\dfrac{2}{3}\)
\(\stackrel\frown{BE}=\stackrel\frown{DC}\Rightarrow ED||BC\)
Áp dụng định lý talet:
\(\dfrac{AN}{AE}=\dfrac{MN}{ED}=\dfrac{2}{3}\Rightarrow\dfrac{EN}{AN}=\dfrac{1}{2}\)
\(\dfrac{ON}{BN}=\dfrac{OB-BN}{BN}=\dfrac{R-\dfrac{2R}{3}}{\dfrac{2R}{3}}=\dfrac{1}{2}\)
\(\Rightarrow\dfrac{EN}{AN}=\dfrac{ON}{BN}=\dfrac{1}{2}\) và \(\widehat{ENO}=\widehat{ANB}\) (đối đỉnh)
\(\Rightarrow\Delta ENO\sim ANB\left(c.g.c\right)\)
\(\Rightarrow\widehat{NBA}=\widehat{NOE}=60^0\)
Hoàn toàn tương tự, ta có \(\Delta MDO\sim\Delta MAC\Rightarrow\widehat{MCA}=\widehat{MOD}=60^0\)
\(\Rightarrow\Delta ABC\) đều
;v Đề tuyển sinh là theo mỗi tỉnh ;v searrch gg tỉnh nào mà chẳng có =))
Câu 1
1) ĐKXĐ: \(x\ge0;x\ne9\)
Thay \(x=16\) ( Thỏa mãn điều kiện ) vào biểu thức \(A\) ta được:
\(A=\dfrac{\sqrt{x}}{\sqrt{x}+3}=\dfrac{\sqrt{16}}{\sqrt{16}+3}=\dfrac{4}{4+3}=\dfrac{4}{7}\)
Vậy \(A=\dfrac{4}{7}\) khi \(x=16\)
Gọi vận tốc xe máy là x ( x > 0, km/h )
vận tốc ô tô là x + 10 km/h
Thời gian xe máy đi từ A -> B là : \(\dfrac{100}{x}\)giờ
Thời gian ô tô đi từ A -> B là : \(\dfrac{100}{x+10}\)giờ
Do ô tô và xe máy suất phát cùng lúc, quãng đường AB ko đổi và ô tô đến B trước xe máy 30 phút = 1/2 giờ
nên ta có phương trình : \(\dfrac{100}{x}-\dfrac{100}{x+10}=\dfrac{1}{2}\)
giải phương trình ta thu được : \(x=40\left(chon\right);x=-50\left(loai\right)\)
Vậy vận tốc xe máy là 40 km/h
vận tốc ô tô là 40 + 10 = 50 km/h
Câu IV:
Gọi vận tốc của xe máy là x(km/h)(Điều kiện: x>0)
Vận tốc của xe ô tô là: x+10(km/h)
Thời gian xe máy đi từ A đến B là: \(\dfrac{100}{x}\left(h\right)\)
Thời gian ô tô đi từ A đến B là: \(\dfrac{100}{x+10}\left(h\right)\)
Theo đề, ta có phương trình: \(\dfrac{100}{x}-\dfrac{100}{x+10}=\dfrac{1}{2}\)
\(\Leftrightarrow\dfrac{200\left(x+10\right)}{2x\left(x+10\right)}-\dfrac{200x}{2x\left(x+10\right)}=\dfrac{x\left(x+10\right)}{2x\left(x+10\right)}\)
Suy ra: \(x^2+10x=200x+2000-200x\)
\(\Leftrightarrow x^2+50x-40x-2000=0\)
\(\Leftrightarrow x\left(x+50\right)-40\left(x+50\right)=0\)
\(\Leftrightarrow\left(x+50\right)\left(x-40\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+50=0\\x-40=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-50\left(loại\right)\\x=40\left(nhận\right)\end{matrix}\right.\)
Vậy: Vận tốc của xe máy là 40km/h
Vận tốc của ô tô là 50km/h