Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow\left\{{}\begin{matrix}2x^2-4xy+2x-4y+6=0\\y^2-x^2+2xy+2x-2=0\end{matrix}\right.\)
\(\Rightarrow x^2+y^2-2xy+4\left(x-y\right)+4=0\)
\(\Leftrightarrow\left(x-y\right)^2+4\left(x-y\right)+4=0\)
\(\Leftrightarrow\left(x-y+2\right)^2=0\)
\(\Rightarrow y=x+2\)
\(\Rightarrow x^2-2x\left(x+2\right)+x-2\left(x+2\right)+3=0\)
\(\Leftrightarrow...\)
a.
\(2x^3-x^2y+x^2+y^2-2xy-y=0\)
\(\Leftrightarrow x^2\left(2x-y+1\right)-y\left(2x-y+1\right)=0\)
\(\Leftrightarrow\left(x^2-y\right)\left(2x-y+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-y=0\\2x-y+1=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}y=x^2\\y=2x+1\end{matrix}\right.\)
Thế vào pt đầu:
\(\left[{}\begin{matrix}x^3+x-2=0\\x\left(2x+1\right)+x-2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left(x-1\right)\left(x^2+x+2\right)=0\\x^2+x-1=0\end{matrix}\right.\)
\(\Leftrightarrow...\)
b.
\(x^2-2xy+x=-y\)
Thế vào \(y^2\) ở pt dưới:
\(x^2\left(x^2-4y+3\right)+\left(x^2-2xy+x\right)^2=0\)
\(\Leftrightarrow x^2\left(x^2-4y+3\right)+x^2\left(x-2y+1\right)^2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\Rightarrow y=0\\x^2-4y+3+\left(x-2y+1\right)^2=0\left(1\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow2x^2-4xy+2x+4y^2-8y+4=0\)
\(\Leftrightarrow2\left(x^2-2xy+x\right)+4y^2-8y+4=0\)
\(\Leftrightarrow-2y+4y^2-8y+4=0\)
\(\Leftrightarrow...\)
Lời giải:
Lấy PT(1) trừ đi PT(2) ta thu được:
$x^2+xy-x+y-2y^2=0$
$\Leftrightarrow (x^2-y^2)+(xy-y^2)-(x-y)=0$
$\Leftrightarrow (x-y)(x+y)+y(x-y)-(x-y)=0$
$\Leftrightarrow (x-y)(x+2y-1)=0$
$\Rightarrow x-y=0$ hoặc $x+2y-1=0$
Nếu $x-y=0\Rightarrow x=y$
Thay vào PT(1): $2y^2+3y^2+2y+y=0$
$\Leftrightarrow y=0$ hoặc $y=-\frac{3}{5}$
$y=0$ thì $x=0$
$y=-\frac{3}{5}$ thì $x=\frac{-3}{5}$
Nếu $x+2y-1=0\Rightarrow 2y=1-x$. Thay vào PT(2):
$2x^2+2x(1-x)+(1-x)^2+6x=0$
$\Leftrightarrow x^2+6x+1=0$
$\Rightarrow x=-3\pm 2\sqrt{2}\Rightarrow y=2\mp \sqrt{2}$
Vậy.......
Lời giải:
Lấy PT(1) trừ đi PT(2) ta thu được:
$x^2+xy-x+y-2y^2=0$
$\Leftrightarrow (x^2-y^2)+(xy-y^2)-(x-y)=0$
$\Leftrightarrow (x-y)(x+y)+y(x-y)-(x-y)=0$
$\Leftrightarrow (x-y)(x+2y-1)=0$
$\Rightarrow x-y=0$ hoặc $x+2y-1=0$
Nếu $x-y=0\Rightarrow x=y$
Thay vào PT(1): $2y^2+3y^2+2y+y=0$
$\Leftrightarrow y=0$ hoặc $y=-\frac{3}{5}$
$y=0$ thì $x=0$
$y=-\frac{3}{5}$ thì $x=\frac{-3}{5}$
Nếu $x+2y-1=0\Rightarrow 2y=1-x$. Thay vào PT(2):
$2x^2+2x(1-x)+(1-x)^2+6x=0$
$\Leftrightarrow x^2+6x+1=0$
$\Rightarrow x=-3\pm 2\sqrt{2}\Rightarrow y=2\mp \sqrt{2}$
Vậy.......
Ta lấy pt thứ 2 cộng 2 lần với pt thứ nhất ta được:
\(x^2+2xy+y^2+4x-4y+4=0\)
Hay: \(\left(x-y+2\right)^2=0\)
Ta suy ra \(y=x+2\). Thay trở lại pt thứ nhất của hệ ta được:
\(x^2-2x\left(x+2\right)+x-2\left(x+2\right)+3=0\)
Trương đương với: \(x^2+5x+1=0\)
Vì vậy có nghiệm: \(x=\frac{-5\pm\sqrt{21}}{2}\).
Do đó: \(y=x+2=\frac{-1\pm\sqrt{21}}{2}\)
Vậy hệ pt đã cho có 2 nghiệm \(\left(x,y\right)=\left(\frac{-5+\sqrt{21}}{2};\frac{-1+\sqrt{21}}{2}\right);\left(\frac{-5-\sqrt{21}}{2};\frac{-1-\sqrt{21}}{2}\right)\)