K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có: \(\left\{{}\begin{matrix}2\left(x-y\right)+3x=1\\3x+2\left(x-y\right)=7\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}5x-2y=1\\5x-2y=7\end{matrix}\right.\)(Vô lý)

Vậy: Hệ phương trình vô nghiệm

4 tháng 7 2021

\(hpt\text{⇔}\left\{{}\begin{matrix}2x-2y+3x=1\\3x+2x-2y=7\end{matrix}\right.\)\(\text{⇔}\left\{{}\begin{matrix}5x-2y=1\\5x-2y=7\end{matrix}\right.\)

Ta thấy : \(\dfrac{5}{5}=\dfrac{-2}{-2}\ne\dfrac{1}{7}\)

Suy ra hệ phương trình vô nghiệm

7 tháng 11 2021

\(1,\Leftrightarrow\left\{{}\begin{matrix}x=y+5\\2y+10+y=11\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{16}{3}\\y=\dfrac{1}{3}\end{matrix}\right.\\ 2,\Leftrightarrow\left\{{}\begin{matrix}3x=1-2y\\1-2y+y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\\ 3,\Leftrightarrow\left\{{}\begin{matrix}x=y+2\\3y+6+2y=11\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=1\end{matrix}\right.\)

13 tháng 12 2022

a: \(\Leftrightarrow\left\{{}\begin{matrix}8x-4y+12-3x+6y-9=48\\9x-12y+9+16x-8y-36=48\end{matrix}\right.\)

=>5x+2y=48-12+9=45 và 25x-20y=48+36-9=48+27=75

=>x=7; y=5

b: \(\Leftrightarrow\left\{{}\begin{matrix}6x+6y-2x+3y=8\\-5x+5y-3x-2y=5\end{matrix}\right.\)

=>4x+9y=8 và -8x+3y=5

=>x=-1/4; y=1

c: \(\Leftrightarrow\left\{{}\begin{matrix}-4x-2+1,5=3y-6-6x\\11,5-12+4x=2y-5+x\end{matrix}\right.\)

=>-4x-0,5=-6x+3y-6 và 4x-0,5=x+2y-5

=>2x-3y=-5,5 và 3x-2y=-4,5

=>x=-1/2; y=3/2

e: \(\Leftrightarrow\left\{{}\begin{matrix}x\cdot2\sqrt{3}-y\sqrt{5}=2\sqrt{3}\cdot\sqrt{2}-\sqrt{5}\cdot\sqrt{3}\\3x-y=3\sqrt{2}-\sqrt{3}\end{matrix}\right.\)

=>\(x=\sqrt{2};y=\sqrt{3}\)

5 tháng 1 2019

Hỏi đáp ToánCòn lại tương tự

6 tháng 1 2019

có mấy bài sau k

cho mình xinn

24 tháng 2 2021

\(\left\{{}\begin{matrix}y^2=\left(x+7\right)\left(x-2\right)\left(1\right)\\3x^2-4xy+y^2=4\left(1-x\right)\left(2\right)\end{matrix}\right.\)

Từ (2) <=> 3x2 - 4xy + y2 + 4x - 4 = 0

<=> (2x - y)2 - (x2 - 4x + 4) = 0

<=> (2x - y)2 - (x - 2)2 = 0

<=> \(\left(2x-y-x+2\right)\left(2x-y+x-2\right)=0\)

<=> \(\left(x-y+2\right)\left(3x-y-2\right)=0\)

<=> \(\left[{}\begin{matrix}x-y+2=0\\3x-y-2=0\end{matrix}\right.\)

TH1: x - y + 2 = 0 > y = x + 2 thay vào pt (1)

(x + 2)2 = (x + 7)(x - 2)

<=> x2 + 4x + 4 = x2 + 5x - 14

<=> x = 18 => y = 18 + 2 = 20

TH2: 3x - y - 2 = 0 <=> y = 3x - 2 thay vào pt (1)

(3x - 2)2 = (x + 7)(x - 2)

<=> 9x2 - 12x + 4 = x2 + 5x - 14

<=> 8x2 - 17x + 18 = 0

<=> 8(x2 - 17/8x + 289/256) + 287/32 = 0

<=> 8(x - 17/16)2 + 287/32 = 0

=> pt vô nghiệm

Vậy ...

 

10 tháng 6 2017

Hệ hai phương trình bậc nhất hai ẩn

11 tháng 2 2017

a) Từ đề bài => (x2+1)-(y2+1)=3y-3x

<=> (x-y)(x+y)+3(x-y)=0

<=> (x-y)(x+y+3)=0

<=> x-y=0 hoặc x+y+3=0

<=> x=y hoặc x=-y-3

Nếu x=-y-3, thế vào pt x2+1=3y ta được

(-y-3)2+1=3y

<=> y2+9+6y+1-3y=0

<=> y2+3y+10=0

<=> (y+3/2)2+31/4=0, vô nghiệm

Vậy ...

11 tháng 2 2017

b) Từ x+y=4 => (x+y)2=16

<=> x2+y2+2xy=16

Lại có: x2+y2=10

Trừ theo vế ta được: 2xy=6

<=> xy=3 => x=3/y (*)

Thế vào x+y=4 ta được:3/y + y = 4

<=> 3+y2=4y

<=> 3+y2-4y=0

<=> (y-1)(y-3)=0

<=> y=1 hoặc y=3

+) y=1, từ (*) => x=3

+) y=3, từ (*) => x=1

Vậy ...

a) Ta có: \(\left\{{}\begin{matrix}3x-2\left|y\right|=9\\2x+3\left|y\right|=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}6x-4\left|y\right|=18\\6x+9\left|y\right|=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-13\left|y\right|=15\\3x-2\left|y\right|=9\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left|y\right|=\dfrac{-15}{13}\\3x-2\left|y\right|=9\end{matrix}\right.\Leftrightarrow\)Phương trình vô nghiệmVậy: \(S=\varnothing\)

28 tháng 2 2021

$\begin{cases}3x-2|y|=9\\2x+3|y|=1\\\end{cases}$

`<=>` $\begin{cases}6x-4|y|=18\\6x+9|y|=3\\\end{cases}$

`<=>` $\begin{cases}13|y|=-15(loại)\\|3x|-2|y|=9\\\end{cases}$

Vậy HPT vô nghiệm

NV
10 tháng 7 2019

a/ Bạn tự giải

b/ ĐKXĐ:...

Cộng vế với vế: \(\frac{x-y}{y+12}=3\Rightarrow x-y=3y+36\Rightarrow x=4y+36\)

Thay vào pt đầu: \(\frac{4y+36}{y}-\frac{y}{y+12}=1\)
Đặt \(\frac{y+12}{y}=a\Rightarrow4a-\frac{1}{a}=1\Rightarrow4a^2-a-1=0\)

\(\Rightarrow a=\frac{1\pm\sqrt{17}}{8}\) \(\Rightarrow\frac{y+12}{y}=\frac{1\pm\sqrt{17}}{8}\)

\(\Rightarrow\left[{}\begin{matrix}y+12=y\left(\frac{1+\sqrt{17}}{8}\right)\\y+12=y\left(\frac{1-\sqrt{17}}{8}\right)\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\left(\frac{-7+\sqrt{17}}{8}\right)y=12\\\left(\frac{-7-\sqrt{17}}{8}\right)y=12\end{matrix}\right.\) \(\Rightarrow y=...\)

Chắc bạn ghi sai đề, nghiệm quá xấu

3/ \(\Leftrightarrow\left\{{}\begin{matrix}3x^2+y^2=5\\3x^2-9y=3\end{matrix}\right.\) \(\Rightarrow y^2+9y=2\Rightarrow y^2+9y-2=0\Rightarrow y=...\)

4/ ĐKXĐ:...

\(\Leftrightarrow\left\{{}\begin{matrix}3\sqrt{3x-1}-3\sqrt{2y+1}=3\\2\sqrt{3x-1}+3\sqrt{2y+1}=12\end{matrix}\right.\)

\(\Rightarrow5\sqrt{3x-1}=15\Rightarrow\sqrt{3x-1}=3\Rightarrow x=\frac{10}{3}\)

\(\sqrt{2y+1}=\sqrt{3x-1}-1=3-1=2\Rightarrow2y+1=4\Rightarrow y=\frac{3}{2}\)