Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1,\Leftrightarrow\left\{{}\begin{matrix}x=y+5\\2y+10+y=11\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{16}{3}\\y=\dfrac{1}{3}\end{matrix}\right.\\ 2,\Leftrightarrow\left\{{}\begin{matrix}3x=1-2y\\1-2y+y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\\ 3,\Leftrightarrow\left\{{}\begin{matrix}x=y+2\\3y+6+2y=11\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=1\end{matrix}\right.\)
a: \(\Leftrightarrow\left\{{}\begin{matrix}8x-4y+12-3x+6y-9=48\\9x-12y+9+16x-8y-36=48\end{matrix}\right.\)
=>5x+2y=48-12+9=45 và 25x-20y=48+36-9=48+27=75
=>x=7; y=5
b: \(\Leftrightarrow\left\{{}\begin{matrix}6x+6y-2x+3y=8\\-5x+5y-3x-2y=5\end{matrix}\right.\)
=>4x+9y=8 và -8x+3y=5
=>x=-1/4; y=1
c: \(\Leftrightarrow\left\{{}\begin{matrix}-4x-2+1,5=3y-6-6x\\11,5-12+4x=2y-5+x\end{matrix}\right.\)
=>-4x-0,5=-6x+3y-6 và 4x-0,5=x+2y-5
=>2x-3y=-5,5 và 3x-2y=-4,5
=>x=-1/2; y=3/2
e: \(\Leftrightarrow\left\{{}\begin{matrix}x\cdot2\sqrt{3}-y\sqrt{5}=2\sqrt{3}\cdot\sqrt{2}-\sqrt{5}\cdot\sqrt{3}\\3x-y=3\sqrt{2}-\sqrt{3}\end{matrix}\right.\)
=>\(x=\sqrt{2};y=\sqrt{3}\)
\(\left\{{}\begin{matrix}y^2=\left(x+7\right)\left(x-2\right)\left(1\right)\\3x^2-4xy+y^2=4\left(1-x\right)\left(2\right)\end{matrix}\right.\)
Từ (2) <=> 3x2 - 4xy + y2 + 4x - 4 = 0
<=> (2x - y)2 - (x2 - 4x + 4) = 0
<=> (2x - y)2 - (x - 2)2 = 0
<=> \(\left(2x-y-x+2\right)\left(2x-y+x-2\right)=0\)
<=> \(\left(x-y+2\right)\left(3x-y-2\right)=0\)
<=> \(\left[{}\begin{matrix}x-y+2=0\\3x-y-2=0\end{matrix}\right.\)
TH1: x - y + 2 = 0 > y = x + 2 thay vào pt (1)
(x + 2)2 = (x + 7)(x - 2)
<=> x2 + 4x + 4 = x2 + 5x - 14
<=> x = 18 => y = 18 + 2 = 20
TH2: 3x - y - 2 = 0 <=> y = 3x - 2 thay vào pt (1)
(3x - 2)2 = (x + 7)(x - 2)
<=> 9x2 - 12x + 4 = x2 + 5x - 14
<=> 8x2 - 17x + 18 = 0
<=> 8(x2 - 17/8x + 289/256) + 287/32 = 0
<=> 8(x - 17/16)2 + 287/32 = 0
=> pt vô nghiệm
Vậy ...
a) Từ đề bài => (x2+1)-(y2+1)=3y-3x
<=> (x-y)(x+y)+3(x-y)=0
<=> (x-y)(x+y+3)=0
<=> x-y=0 hoặc x+y+3=0
<=> x=y hoặc x=-y-3
Nếu x=-y-3, thế vào pt x2+1=3y ta được
(-y-3)2+1=3y
<=> y2+9+6y+1-3y=0
<=> y2+3y+10=0
<=> (y+3/2)2+31/4=0, vô nghiệm
Vậy ...
b) Từ x+y=4 => (x+y)2=16
<=> x2+y2+2xy=16
Lại có: x2+y2=10
Trừ theo vế ta được: 2xy=6
<=> xy=3 => x=3/y (*)
Thế vào x+y=4 ta được:3/y + y = 4
<=> 3+y2=4y
<=> 3+y2-4y=0
<=> (y-1)(y-3)=0
<=> y=1 hoặc y=3
+) y=1, từ (*) => x=3
+) y=3, từ (*) => x=1
Vậy ...
a) Ta có: \(\left\{{}\begin{matrix}3x-2\left|y\right|=9\\2x+3\left|y\right|=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}6x-4\left|y\right|=18\\6x+9\left|y\right|=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-13\left|y\right|=15\\3x-2\left|y\right|=9\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left|y\right|=\dfrac{-15}{13}\\3x-2\left|y\right|=9\end{matrix}\right.\Leftrightarrow\)Phương trình vô nghiệmVậy: \(S=\varnothing\)
$\begin{cases}3x-2|y|=9\\2x+3|y|=1\\\end{cases}$
`<=>` $\begin{cases}6x-4|y|=18\\6x+9|y|=3\\\end{cases}$
`<=>` $\begin{cases}13|y|=-15(loại)\\|3x|-2|y|=9\\\end{cases}$
Vậy HPT vô nghiệm
a/ Bạn tự giải
b/ ĐKXĐ:...
Cộng vế với vế: \(\frac{x-y}{y+12}=3\Rightarrow x-y=3y+36\Rightarrow x=4y+36\)
Thay vào pt đầu: \(\frac{4y+36}{y}-\frac{y}{y+12}=1\)
Đặt \(\frac{y+12}{y}=a\Rightarrow4a-\frac{1}{a}=1\Rightarrow4a^2-a-1=0\)
\(\Rightarrow a=\frac{1\pm\sqrt{17}}{8}\) \(\Rightarrow\frac{y+12}{y}=\frac{1\pm\sqrt{17}}{8}\)
\(\Rightarrow\left[{}\begin{matrix}y+12=y\left(\frac{1+\sqrt{17}}{8}\right)\\y+12=y\left(\frac{1-\sqrt{17}}{8}\right)\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\left(\frac{-7+\sqrt{17}}{8}\right)y=12\\\left(\frac{-7-\sqrt{17}}{8}\right)y=12\end{matrix}\right.\) \(\Rightarrow y=...\)
Chắc bạn ghi sai đề, nghiệm quá xấu
3/ \(\Leftrightarrow\left\{{}\begin{matrix}3x^2+y^2=5\\3x^2-9y=3\end{matrix}\right.\) \(\Rightarrow y^2+9y=2\Rightarrow y^2+9y-2=0\Rightarrow y=...\)
4/ ĐKXĐ:...
\(\Leftrightarrow\left\{{}\begin{matrix}3\sqrt{3x-1}-3\sqrt{2y+1}=3\\2\sqrt{3x-1}+3\sqrt{2y+1}=12\end{matrix}\right.\)
\(\Rightarrow5\sqrt{3x-1}=15\Rightarrow\sqrt{3x-1}=3\Rightarrow x=\frac{10}{3}\)
\(\sqrt{2y+1}=\sqrt{3x-1}-1=3-1=2\Rightarrow2y+1=4\Rightarrow y=\frac{3}{2}\)
Ta có: \(\left\{{}\begin{matrix}2\left(x-y\right)+3x=1\\3x+2\left(x-y\right)=7\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}5x-2y=1\\5x-2y=7\end{matrix}\right.\)(Vô lý)
Vậy: Hệ phương trình vô nghiệm
\(hpt\text{⇔}\left\{{}\begin{matrix}2x-2y+3x=1\\3x+2x-2y=7\end{matrix}\right.\)\(\text{⇔}\left\{{}\begin{matrix}5x-2y=1\\5x-2y=7\end{matrix}\right.\)
Ta thấy : \(\dfrac{5}{5}=\dfrac{-2}{-2}\ne\dfrac{1}{7}\)
Suy ra hệ phương trình vô nghiệm