Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
PT (2) $\Leftrightarrow x+y+xy+1=0$
$\Leftrightarrow (x+1)(y+1)=0$
$\Rightarrow x+1=0$ hoặc y+1=0$
Nếu $x+1=0$ suy ra $x=-1$. Thay vào PT $(1)$ suy ra $y^2=2\Rightarrow y=\pm \sqrt{2}$
Nếu $y+1=0\Rightarrow y=-1$. Thay vào PT $(1)$ suy ra $x^2=2\Rightarrow x=\pm \sqrt{2}$
Vậy $(x,y)=(-1; \pm \sqrt{2}); (\pm \sqrt{2}; -1)$
Từ đây ta suy ra:
A đúng.
B đúng
C sai
D đúng
(x2-3x+2)(x2-9x+20)=4
=>(x-1)(x-2)(x-4)(x-5)=4
Đặt x-3=a , phương trình tương đương:
(a+2)(a+1)(a-1)(a-2)=4
=>(a2-1)(a2-4)=4
=>a4-5a2=0
Tự giải nốt nhé!
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x+y\right)^2-2xy=3\\x+y+xy=1\end{matrix}\right.\)
Đặt \(\left\{{}\begin{matrix}x+y=a\\xy=b\end{matrix}\right.\) với \(a^2\ge4b\)
\(\Rightarrow\left\{{}\begin{matrix}a^2-2b=3\\a+b=1\end{matrix}\right.\) \(\Rightarrow b=1-a\)
\(\Rightarrow a^2-2\left(1-a\right)=3\Leftrightarrow a^2+2a-5=0\)
\(\Rightarrow\left[{}\begin{matrix}a=-1+\sqrt{6}\Rightarrow b=2-\sqrt{6}\\a=-1-\sqrt{6}\Rightarrow b=2+\sqrt{6}\left(l\right)\end{matrix}\right.\)
\(\Rightarrow x_0+y_0=a=-1+\sqrt{6}\Rightarrow\left(x_0+y_0+1\right)^2=6\)
a) Cả hai phương trình đều có chung \(\sqrt{x+3}\)
pt đầu suy ra \(\sqrt{x+3}=2\sqrt{y-1}\)
pt sau suy ra \(\sqrt{x+3}=4-\sqrt{y+1}\)
Vậy \(2\sqrt{y-1}=4-\sqrt{y+1}\), đk y > 1
\(4\left(y-1\right)=16-8\sqrt{y+1}+y+1\)
\(8\sqrt{y+1}+3y-21=0\)
Đặt \(\sqrt{y+1}=t\)
=> y = t2 - 1
=> 8t + 3(t2 -1) -21 =0
3t2 + 8t - 24 = 0
=> t = ...
=> y = t2 - 1
=> \(\sqrt{x+3}=2\sqrt{y-1}\)
=> x =...
b) Trừ hai pt cho nhau ta có:
x2 - y2 = 3(y - x)
(x - y) (x + y + 3) = 0
=> x = y hoặc x + y + 3 = 0
Xét hai trường hợp, rút x theo y rồi thay trở lại một trong hai pt ban đầu tìm ra nghiệm
a: \(x\in\left[-2;3\right]\)
nên \(\left\{{}\begin{matrix}x^4\in\left[0;81\right]\\x^2\in\left[0;9\right]\end{matrix}\right.\Leftrightarrow x^4+3x^2\in\left[0;108\right]\)
=>\(y\in\left[2;110\right]\)
y=2 khi x=0
y=110 khi \(x^4+3x^2=108\)
=>x^4+12x^2-9x^2-108=0
=>x=3
c: \(y=x\left(x+3\right)\left(x+1\right)\left(x+2\right)\)
\(=\left(x^2+3x\right)\left(x^2+3x+2\right)\)
\(=\left(x^2+3x\right)^2+2\left(x^2+3x\right)+1-1\)
\(=\left(x^2+3x+1\right)^2-1>=-1\)
Dấu'=' xảy ra khi x^2+3x+1=0
hay \(x\in\left\{\dfrac{-3+\sqrt{5}}{2};\dfrac{-3-\sqrt{5}}{2}\right\}\)
\(7x^3+11=3\left(x+y\right)\left(x+y+1\right)\)
\(\Leftrightarrow\left(x+y\right)^3+7x^3+11+1=\left(x+y\right)^3+3\left(x+y\right)\left(x+y+1\right)+1\)
\(\Leftrightarrow x^3+3x^2y+3xy^2+y^3+7x^3+3xy\left(3x+y\right)=\left(x+y\right)^3+3\left(x+y\right)^2+3\left(x+y\right)+1\)
\(\Leftrightarrow8x^3+12x^2y+6xy^2+y^3=\left(x+y+1\right)^3\)
\(\Leftrightarrow\left(2x+y\right)^3=\left(x+y+1\right)^3\)
\(\Leftrightarrow2x+y=x+y+1\)
\(\Leftrightarrow x=1\)
Với \(x=1\):
\(y\left(3+y\right)=4\)
\(\Leftrightarrow\orbr{\begin{cases}y=1\\y=-4\end{cases}}\).
y = 1
y = -4