Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ Bạn tự giải
b/ ĐKXĐ:...
Cộng vế với vế: \(\frac{x-y}{y+12}=3\Rightarrow x-y=3y+36\Rightarrow x=4y+36\)
Thay vào pt đầu: \(\frac{4y+36}{y}-\frac{y}{y+12}=1\)
Đặt \(\frac{y+12}{y}=a\Rightarrow4a-\frac{1}{a}=1\Rightarrow4a^2-a-1=0\)
\(\Rightarrow a=\frac{1\pm\sqrt{17}}{8}\) \(\Rightarrow\frac{y+12}{y}=\frac{1\pm\sqrt{17}}{8}\)
\(\Rightarrow\left[{}\begin{matrix}y+12=y\left(\frac{1+\sqrt{17}}{8}\right)\\y+12=y\left(\frac{1-\sqrt{17}}{8}\right)\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\left(\frac{-7+\sqrt{17}}{8}\right)y=12\\\left(\frac{-7-\sqrt{17}}{8}\right)y=12\end{matrix}\right.\) \(\Rightarrow y=...\)
Chắc bạn ghi sai đề, nghiệm quá xấu
3/ \(\Leftrightarrow\left\{{}\begin{matrix}3x^2+y^2=5\\3x^2-9y=3\end{matrix}\right.\) \(\Rightarrow y^2+9y=2\Rightarrow y^2+9y-2=0\Rightarrow y=...\)
4/ ĐKXĐ:...
\(\Leftrightarrow\left\{{}\begin{matrix}3\sqrt{3x-1}-3\sqrt{2y+1}=3\\2\sqrt{3x-1}+3\sqrt{2y+1}=12\end{matrix}\right.\)
\(\Rightarrow5\sqrt{3x-1}=15\Rightarrow\sqrt{3x-1}=3\Rightarrow x=\frac{10}{3}\)
\(\sqrt{2y+1}=\sqrt{3x-1}-1=3-1=2\Rightarrow2y+1=4\Rightarrow y=\frac{3}{2}\)
a) \(\left\{{}\begin{matrix}x+2y=-1\\x-y=5\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}3y=-6\\x-y=5\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y=-2\\x=3\end{matrix}\right.\)
Vậy..............................................................................
b) \(\left\{{}\begin{matrix}\frac{5}{x}-\frac{6}{y}=3\\\frac{4}{x}+\frac{9}{y}=7\end{matrix}\right.\)ĐKXĐ: x,y≠0
\(\Leftrightarrow\left\{{}\begin{matrix}\frac{20}{x}-\frac{24}{y}=12\\\frac{20}{x}+\frac{45}{y}=35\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\frac{69}{y}=23\\\frac{20}{x}+\frac{45}{y}=35\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y=3\\x=10\end{matrix}\right.\)
Vậy...................................................................................
c) \(\left\{{}\begin{matrix}3\sqrt{x+1}+\sqrt{y-1}=1\\\sqrt{x+1}-\sqrt{y-1}=-2\end{matrix}\right.\)ĐKXĐ:\(\left\{{}\begin{matrix}x\ge-1\\y\ge1\end{matrix}\right.\)
\(\Rightarrow4\sqrt{x+1}\)\(=-1\)(vô nghiệm)
Vậy hệ pt vô nghiệm
d) Nhân 3 pt đầu rồi thu gọn
a/ ĐKXĐ: ...
Đặt \(\left\{{}\begin{matrix}\frac{1}{x-1}=u\\\frac{1}{2y+1}=v\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}2u+v=\frac{6}{5}\\3u-2v=\frac{11}{10}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}u=\frac{1}{2}\\v=\frac{1}{5}\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x-1=2\\2y+1=5\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=3\\y=2\end{matrix}\right.\)
b/ ĐKXĐ: ...
Đặt \(\left\{{}\begin{matrix}x+y=u\\\sqrt{x+1}=v\ge0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}2u+v=4\\u-3v=-5\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}u=1\\v=2\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x+y=1\\\sqrt{x+1}=2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}y=1-x\\x+1=4\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=3\\y=-2\end{matrix}\right.\)
a: \(\Leftrightarrow\left\{{}\begin{matrix}8x-4y+12-3x+6y-9=48\\9x-12y+9+16x-8y-36=48\end{matrix}\right.\)
=>5x+2y=48-12+9=45 và 25x-20y=48+36-9=48+27=75
=>x=7; y=5
b: \(\Leftrightarrow\left\{{}\begin{matrix}6x+6y-2x+3y=8\\-5x+5y-3x-2y=5\end{matrix}\right.\)
=>4x+9y=8 và -8x+3y=5
=>x=-1/4; y=1
c: \(\Leftrightarrow\left\{{}\begin{matrix}-4x-2+1,5=3y-6-6x\\11,5-12+4x=2y-5+x\end{matrix}\right.\)
=>-4x-0,5=-6x+3y-6 và 4x-0,5=x+2y-5
=>2x-3y=-5,5 và 3x-2y=-4,5
=>x=-1/2; y=3/2
e: \(\Leftrightarrow\left\{{}\begin{matrix}x\cdot2\sqrt{3}-y\sqrt{5}=2\sqrt{3}\cdot\sqrt{2}-\sqrt{5}\cdot\sqrt{3}\\3x-y=3\sqrt{2}-\sqrt{3}\end{matrix}\right.\)
=>\(x=\sqrt{2};y=\sqrt{3}\)
ĐKXĐ: ...
Đặt \(\left\{{}\begin{matrix}\sqrt{4x+y}=a\ge0\\\sqrt{x+2y}=b\ge0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=\frac{2a^2-b^2}{7}\\y=\frac{4b^2-a^2}{7}\end{matrix}\right.\)
Ta được: \(\left\{{}\begin{matrix}a+b=5\\\frac{5\left(2a^2-b^2\right)}{21}-\frac{4b^2-a^2}{42}+b=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=5-b\\21a^2-14b^2+42b-84=0\end{matrix}\right.\)
\(\Rightarrow21\left(5-b\right)^2-14b^2+42b-84=0\)
\(\Leftrightarrow b^2-24b+63=0\Rightarrow\left[{}\begin{matrix}b=21\Rightarrow a=-16\left(l\right)\\b=3\Rightarrow a=2\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\sqrt{4x+y}=2\\\sqrt{x+2y}=3\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}4x+y=4\\x+2y=9\end{matrix}\right.\) \(\Leftrightarrow...\)
Lấy PT1 trừ PT2 ta được
\(\sqrt{4x+y}-\frac{5}{3}x+\frac{1}{6}y=3\)
\(\Leftrightarrow6\sqrt{4x+y}-10x+y=18\)
đặt \(\sqrt{4x+y}=a\left(a\ge0\right)\)
\(\Rightarrow6a-\frac{5a^2-7y}{2}=18\)
\(\Leftrightarrow12a-5a^2+7y=36\)
Giải a theo y, rồi thay vào