K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 1 2022

a) \(\hept{\begin{cases}\left(x+1\right)\left(y+1\right)=8\\x\left(x+1\right)+y\left(y+1\right)+xy=17\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x+y+xy=7\\x^2+y^2+x+y+xy=17\end{cases}}\)

Dat \(\hept{\begin{cases}xy=P\\x+y=S\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}S+P=7\\S^2+S-P=17\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}P=7-S\\S^2+S-\left(7-S\right)=17\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}P=7-S\\S^2+2S=24\end{cases}}\)

\(\hept{\begin{cases}S=-6\\P=13\\S=4;P=3\end{cases}}\)

b) 

22 tháng 11 2018

\(\hept{\begin{cases}x+y+z=0\left(1\right)\\2x+3y+z=0\left(2\right)\\\left(x+1\right)^2+\left(y+2\right)^2+\left(z+3\right)^3=26\left(3\right)\end{cases}}\)

Từ (1), (2) suy ra:

\(\hept{\begin{cases}x=-2y\\z=y\end{cases}}\)

Thê vô (3) ta được:

\(\left(-2y+1\right)^2+\left(y+2\right)^2+\left(y+3\right)^2=26\)

\(\Leftrightarrow y^3+14y^2+27y+6=0\)

\(\Leftrightarrow\left(y+2\right)\left(y^2+12y+3\right)=0\)

1 tháng 9 2019

th1 y=z=-2

x=4

th2 y=z=-6+ căn 33

x=12-căn 33

NV
7 tháng 5 2020

\(\left(x;y;z\right)=\left(0;0;0\right)\) là 1 nghiệm (nếu 1 nghiệm =0 thì 2 nghiệm còn lại cũng =0)

Với \(x;y;z\ne0\Rightarrow\left\{{}\begin{matrix}\frac{1}{x^2}=\frac{1}{y}+1\\\frac{1}{y^2}=\frac{1}{z}+1\\\frac{1}{z^2}=\frac{1}{x}+1\end{matrix}\right.\) đặt \(\left(\frac{1}{x};\frac{1}{y};\frac{1}{z}\right)=\left(a;b;c\right)\)

\(\Rightarrow\left\{{}\begin{matrix}a^2=b+1\\b^2=c+1\\c^2=a+1\end{matrix}\right.\) \(\Rightarrow a;b;c\ge-1\)

- Nếu \(a>0\Rightarrow c^2>1\Rightarrow c>1\Rightarrow b^2>2\Rightarrow b>1\) \(\Rightarrow a;b;c>0\)

Không mất tính tổng quát, giả sử \(a=max\left\{a;b;c\right\}\)

\(\Rightarrow a+1\ge b+1\Rightarrow c^2\ge a^2\Rightarrow c\ge a\Rightarrow c=a\)

\(\Rightarrow a+1=b+1\Rightarrow a=b\)

\(\Rightarrow a=b=c\Rightarrow a^2=a+1\Rightarrow a^2-a-1=0\)

\(\Rightarrow a=b=c=\frac{1+\sqrt{5}}{2}\Rightarrow x=y=z=\frac{\sqrt{5}-1}{2}\)

- Tương tự nếu \(-1\le a\le0\Rightarrow-1\le a;b;c\le0\)

Giả sử \(a=max\left\{a;b;c\right\}\Rightarrow a^2\le c^2\Rightarrow a+1\le b+1\Rightarrow a=b\)

\(\Rightarrow b+1=c+1\Rightarrow b=c\Rightarrow a=b=c\)

\(\Rightarrow a^2=a+1\Rightarrow a^2-a-1=0\Rightarrow a=b=c=\frac{\sqrt{5}-1}{2}\)

\(\Rightarrow x=y=z=\frac{\sqrt{5}+1}{2}\)

Vậy nghiệm của hệ là \(x=y=z=\frac{\sqrt{5}\pm1}{2}\)

18 tháng 1 2017

pt 1) x=y=z  Cosi 3 số