K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 4 2018

b)**Phương trình có một nghiệm duy nhất

↔ 2 ≠ \(\dfrac{-1}{m}\)

↔ 2m≠ -1

↔m ≠ \(\dfrac{-1}{2}\)

***Phương trình vô nghiệm

↔ 2= \(\dfrac{-1}{m}\)\(\dfrac{1}{5}\)

\(\left\{{}\begin{matrix}2=\dfrac{-1}{m}\\\dfrac{-1}{m}\ne\dfrac{1}{5}\end{matrix}\right.\)

\(\left\{{}\begin{matrix}m=\dfrac{-1}{2}\left(nhận\right)\\m\ne-5\end{matrix}\right.\)

Vậy.............

29 tháng 4 2018

bạn biết làm câu a) không ?

18 tháng 7 2017

<=>\(\left\{{}\begin{matrix}\left(x+\dfrac{1}{y}\right)^2-\dfrac{2x}{y}+\dfrac{x}{y}=3\left(1\right)\\x+\dfrac{1}{y}+\dfrac{x}{y}=3\left(2\right)\end{matrix}\right.\)

cộng vế với vế của (1) và (2) ta được :

(x+\(\dfrac{1}{y}\))2 +( 1+\(\dfrac{1}{y}\)) = 6

(x +\(\dfrac{1}{y}\))2 +(1+\(\dfrac{1}{y}\)) - 6 = 0

đặt t =x +\(\dfrac{1}{y}\) rồi giải phương trình bậc 2 theo t . tìm ra t thế x theo y vào hệ đã cho ta tìm được x và y .< trước khi làm bài này phải có ĐK y#0>

24 tháng 6 2017

gọi HPT trên là (1)

\(\left(1\right)\Leftrightarrow\left\{{}\begin{matrix}x+y+\dfrac{x+y}{xy}=\dfrac{9}{2}\\xy+\dfrac{1}{xy}=\dfrac{5}{2}\end{matrix}\right.\)

Đặt x+y=a;xy=b(b#0).HPT trở thành:

\(\left\{{}\begin{matrix}a+\dfrac{a}{b}=\dfrac{9}{2}\left(!\right)\\b+\dfrac{1}{b}=\dfrac{5}{2}\left(!!\right)\end{matrix}\right.\)

Giải PT (!!) ta được \(b_1=2;b=\dfrac{1}{2}\)

TH1: Với b=2 thay vào (!)=>a=3

=> x+y=3 và xy=2 => x=2;y=1.

TH2: Với b=1/2 thay vào (!)=> a=3/2

=> x+y=3/2 và xy=1/2 => x=1 và y=1/2.

Vậy \(\left(x;y\right)=\left\{\left(2;1\right);\left(1;\dfrac{1}{2}\right)\right\}\)

24 tháng 6 2017

Ôi mẹ ơi! Bài lm của con khá giống nó nhg may là chưa đang!

22 tháng 8 2021

\(\left\{{}\begin{matrix}\dfrac{5}{y}-\dfrac{7}{y}=9\\\dfrac{4}{x}-\dfrac{9}{y}=35\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{-2}{y}=9\\\dfrac{4}{x}-\dfrac{9}{y}=35\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=-\dfrac{2}{9}\\\dfrac{4}{x}-\dfrac{9}{-\dfrac{2}{9}}=35\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=-\dfrac{2}{9}\\\dfrac{4}{x}=-\dfrac{11}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=-\dfrac{2}{9}\\x=-\dfrac{8}{11}\end{matrix}\right.\)

Vậy....

Giải hệ sau :

Câu a :

\(\left\{{}\begin{matrix}x+y=-1\\2x+y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+y=-1\\-x=-2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+y=-1\\x=2\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}y=-3\\x=2\end{matrix}\right.\)

Vậy ...........................

Câu b :

Đặt \(\left\{{}\begin{matrix}\dfrac{1}{x}=a\\\dfrac{1}{y}=b\end{matrix}\right.\) . Ta có :

\(\left\{{}\begin{matrix}a+b=\dfrac{1}{5}\\3a+4b=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3a+3b=\dfrac{3}{5}\\3a+4b=2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-b=-\dfrac{7}{5}\\3a+4b=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=\dfrac{7}{5}\\a=-\dfrac{6}{5}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x}=\dfrac{7}{5}\\\dfrac{1}{y}=-\dfrac{6}{5}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\dfrac{5}{7}\\y=-\dfrac{5}{6}\end{matrix}\right.\)

Vậy..................

12 tháng 1 2018

\(a,\left\{{}\begin{matrix}2x-y=4\\x+5y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x-y=4\\2x+10y=6\end{matrix}\right.\left\{{}\begin{matrix}11y=2\\2x+10y=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{2}{11}\\2x+10.\dfrac{2}{11}=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{2}{11}\\2x=\dfrac{46}{11}\end{matrix}\right.\left\{{}\begin{matrix}y=\dfrac{2}{11}\\x=\dfrac{23}{11}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{2x-4+1}{x-2}+\dfrac{y+3+4}{y+3}=5\\\dfrac{x-2+3}{x-2}+\dfrac{3y+9-8}{y+3}=5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x-2}+\dfrac{4}{y+3}=5-1-2=2\\\dfrac{3}{x-2}+\dfrac{-8}{y+3}=5-1-3=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-2=1\\y+3=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=1\end{matrix}\right.\)