Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=3x-x^2\)
\(=-\left(x^2-2.x.\frac{3}{2}+\left(\frac{3}{2}\right)^2-\frac{9}{4}\right)\)
\(=-\left(\left(x-\frac{3}{2}\right)^2-\frac{9}{4}\right)\)
\(=\frac{9}{4}-\left(x-\frac{3}{2}\right)^2\ge\frac{9}{4}\)
Min A = \(\frac{9}{4}\)khi \(x-\frac{3}{2}=0=>x=\frac{3}{2}\)
\(B=25+2x-x^2\)
\(=-\left(x^2-2x+1-26\right)\)
\(=-\left(\left(x-1\right)^2-26\right)\)
\(=26-\left(x-1\right)^2\ge26\)
Min A = 26 khi \(x-1=0=>x=1\)
\(C=x^2-5x+19\)
\(=x^2-2.x.\frac{5}{2}+\left(\frac{5}{2}\right)^2+\frac{51}{4}\)
\(=\left(x+\frac{5}{2}\right)^2+\frac{51}{4}\ge\frac{51}{4}\)
Min C = \(\frac{51}{4}\)khi \(x+\frac{5}{2}=0=>x=\frac{-5}{2}\)
@@@ nha các bạn . Thanks
a, 2\(xy\) - 2\(x\) + 3\(y\) = -9
(2\(xy\) - 2\(x\)) + 3\(y\) - 3 = -12
2\(x\)(\(y-1\)) + 3(\(y-1\)) = -12
(\(y-1\))(2\(x\) + 3) = -12
Ư(12) = {-12; -6; -4; -3; -2; -1; 1; 2; 3; 4; 6; 12}
Lập bảng ta có:
\(y\)-1 | -12 | -6 | -4 | -3 | -2 | -1 | 1 | 2 | 3 | 4 | 6 | 12 |
\(y\) | -11 | -5 | -3 | -2 | -1 | 0 | 2 | 3 | 4 | 5 | 7 | 13 |
2\(x\)+3 | 1 | 2 | 3 | 4 | 6 | 12 | -12 | -6 | -4 | -3 | -2 | -1 |
\(x\) | -1 | -\(\dfrac{1}{2}\) | 0 | \(\dfrac{1}{2}\) | \(\dfrac{3}{2}\) | \(\dfrac{9}{2}\) | \(-\dfrac{15}{2}\) | \(-\dfrac{9}{2}\) | -\(\dfrac{7}{2}\) | -3 | \(-\dfrac{5}{2}\) | -2 |
Theo bảng trên ta có: Các cặp \(x\);\(y\) nguyên thỏa mãn đề bài là:
(\(x;y\)) = (-1; -11); (0; -3); (-3; 5); ( -2; 13)
b, (\(x+1\))2(\(y\) - 3) = -4
Ư(4) = {-4; -2; -1; 1; 2; 4}
Lập bảng ta có:
\(\left(x+1\right)^2\) | - 4(loại) | -2(loại) | -1(loại) | 1 | 2 | 4 |
\(x\) | 0 | \(\pm\)\(\sqrt{2}\)(loại) | 1; -3 | |||
\(y-3\) | 1 | 2 | 4 | -4 | -2 | -1 |
\(y\) | -1 | 2 |
Theo bảng trên ta có: các cặp \(x;y\) nguyên thỏa mãn đề bài là:
(\(x;y\)) = (0; -1); (-3; 2); (1; 2)
\(\left(x-3\right)\left(x-12\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-3=0\\x-12=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=3\\x=12\end{cases}}\)
\(\Rightarrow x\in\left\{3;12\right\}\)
\(\left(x^2-81\right)\left(x^2+9\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x^2-81=0\\x^2+9=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=9\\x\in\varnothing\end{cases}}\Leftrightarrow x=9\)
\(\Rightarrow x=9\)
\(\left(x-4\right)\left(x+2\right)< 0\)
\(\Rightarrow\hept{\begin{cases}x-4\\x+2\end{cases}}\)trái dấu
\(TH1:\hept{\begin{cases}x-4>0\\x+2< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}x>4\\x< -2\end{cases}}\Leftrightarrow x\in\varnothing\)
\(TH2:\hept{\begin{cases}x-4< 0\\x+2>0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x< 4\\x>-2\end{cases}}\Leftrightarrow x\in\left\{-1;0;1;2;3\right\}\)
Vậy \(x\in\left\{-1;0;1;2;3\right\}\)
a) -12.(x - 5) + 7(3 - x) = 5
=> -12x + 60 + 21 - 7x = 5
=> -19x + 81 = 5
=> -19x = 5 - 81
=> -19x = -76
=> x = -76 : (-19)
=> x = 4
b) (x + 1) + (x + 2) + (x + 3) + ... + (x + 20) = 250
=> (x + x + x + ... + x) + (1 + 2 + 3 + ... + 20) = 250
=> 20x + 210 = 250
=> 20x = 250 - 210
=> 20x = 40
= > x = 40 : 20
=> x = 2
\(-12\left(x-5\right)+7\left(3-x\right)=5\)
\(\Leftrightarrow-12x+60+21-7x=5\)
\(\Leftrightarrow-19x+81=5\)
\(\Leftrightarrow81-5=19x\)
\(\Leftrightarrow19x=76\)
\(\Leftrightarrow x=4\)
a)5-2x=3x+20
5=3x+20+2x
5=5x+20
=>5x+20=5
5x=5-20
5x=-15
x=(-15):5
x=-3
a, 2x + 35 -x+27=0
x +62=0
x=-62
b, 2x -41 -3x + 23 =0
-x -18=0
-x=18
x=-18
c, 4x -12-3x-15= -124
x -27=-124
x= -97
d, Suy ra x+3 =0 hoặc 2x-18=0
x=-3 hoặc 2x=18 => x=9
vậy x=-3 hoặc x=9
a, => x^3 < 0 ; x-3 > 0 hoặc x^3 > 0 ; x-3 < 0
=> 0 < x < 3
b, => x^4.(2x-8) < 0
=> x^4.(x-4) < 0
Vì x^4 >= 0
=> x-4 < 0
=> x < 4
c, Vì x-1 < x+12
=> x-1 < 0 ; x+12 >0
=> -12 < x < 1
d, => x-12 > 0 ; x-1 > 0 hoặc x-12 < 0 ; x-1 < 0
=> x >12 hoặc x < 1
Tk mk nha
Phần a ,
x + 3 chia hết cho x + 1
x - 1 chia hết cho x - 1
\(\Rightarrow x+3-\left(x-1\right)=4\text{ }⋮\text{ }x-1\)
\(x-1\in\left\{1\text{ };\text{ }-1\text{ };\text{ }2\text{ };\text{ }-2\text{ };\text{ }4\text{ };\text{ }-4\right\}\)
\(\Rightarrow x\in\left\{2\text{ };\text{ }0\text{ };\text{ }3\text{ };\text{ }-1\text{ };\text{ }5\text{ };\text{ }-3\right\}\)
Phần b,
\(\frac{4x+3}{2x+1}=\frac{2\left(2x+1\right)+1}{2x+1}=\frac{2\left(2x+1\right)}{2x+1}+\frac{1}{2x+1}=2+\frac{1}{2x+1}\in Z\)
\(\Rightarrow1\text{ }⋮\text{ }2x+1\)
\(\Rightarrow2x+1\in\left\{1\text{ };\text{ }-1\right\}\)
\(\Rightarrow x=0\)vì \(x\in N\)
Ta thấy \(\left|x+1\right|\ge0\)
\(\left|3-x\right|\ge0\)
\(\Rightarrow A=\left|x+1\right|+\left|3-x\right|\ge0\)
\(MinA=0\Leftrightarrow\hept{\begin{cases}x+1=0\\3-x=0\end{cases}\Rightarrow\hept{\begin{cases}x=-1\\x=3\end{cases}}}\)
Ta có : \(\left|x+4\right|\ge0\)
\(\Rightarrow2\left|x+4\right|-5\ge-5\)
\(MinB=-5\Leftrightarrow x+4=0\Rightarrow x=-4\)
Câu C tương tự nha
\(2x^4-x^3+2x^2+1=2x^4-2x^3+2x^2+x^3-x^2+x+x^2-x+1\\ \)
\(=2x^2\left(x^2-x+1\right)+x\left(x^2-x+1\right)+\left(x^2-x+1\right)=\left(x^2-x+1\right)\left(2x^2+x+1\right)\)
Vậy a = 2; b = 1; c = 1.
Làm rõ hơn đi bạn