Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cái này Liên ợp thần chưởng thôi !
ĐK: \(\frac{10}{3}\ge x\ge\frac{6}{5}\)ta có pt
<=>\(2x^2-4x+3x-6=\sqrt{5x-6}-2+\sqrt{10-3x}-2\)
<=>\(2x\left(x-2\right)+3\left(x-2\right)=\frac{5\left(x-2\right)}{\sqrt{5x-6}+2}+\frac{3\left(2-x\right)}{\sqrt{10-3x}+2}\)
<=>\(\left(x-2\right)\left(2x+3+\frac{3}{\sqrt{10-3x}+2}-\frac{5}{\sqrt{5x-6}+2}\right)=0\) (1)
Vì \(\sqrt{5x-6}+2\ge2\Rightarrow\frac{-5}{\sqrt{5x-6}+2}\ge-\frac{5}{2}\)
Mà \(x\ge\frac{6}{5}\Rightarrow2x+3-\frac{5}{\sqrt{5x-6}+2}+\frac{3}{\sqrt{10-3x}+2}>0\)
Nên pt(1) <=> x=2 (thỏa mãn ĐK)
vậy ...
^_^
\(\sqrt{5x-6}+\sqrt{10-3x}=2x^2-x-2\)
\(\Leftrightarrow\sqrt{5x-6}-2x^2+x+\sqrt{10-3x}+2=0\)
\(\Leftrightarrow x=2\)
\(\sqrt{5x-6}+\sqrt{10-3x}=2x^2-x-2\)
\(\Leftrightarrow\sqrt{5x-6}-2x^2+x+\sqrt{10-3x}+2=0\)
\(\Leftrightarrow x=2\)
Bài 3 nhé bạn đặt cái căn đầu là a ,căn sau là b
a+b=x
ab=1
Rồi tính lần lượt a3 +b3 bằng ẩn x hết
và mũ 4 cũng vậy rồi lấy 2 số nhân nhau .Bđ là ra
\(pt\Leftrightarrow\sqrt{5x-6}-2+\sqrt{10-3x}-2-2x^2+x+6=0\)
\(\Leftrightarrow\frac{5x-10}{\sqrt{5x-6}+2}+\frac{6-3x}{\sqrt{10-3x}+2}-\left(x-2\right)\left(2x+3\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(\frac{5}{\sqrt{5x-6}+2}+\frac{3}{\sqrt{10-3x}+2}-2x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\\frac{5}{\sqrt{5x-6}+2}+\frac{3}{\sqrt{10-3x}+2}-2x-3=0\end{matrix}\right.\)
\(\frac{5}{\sqrt{5x-6}+2}+\frac{3}{\sqrt{10-3x}+2}-2x-3=0\)
Ta thấy \(\left\{{}\begin{matrix}x\ge\frac{6}{5}\\x\le\frac{10}{3}\end{matrix}\right.\)(vô lý)
Vậy pt có nghiệm duy nhất x=2
a)\(\sqrt{2x^2+8x+6}+\sqrt{x^2-1}=2x+2\)
ĐK:tự xác định
\(pt\Leftrightarrow\sqrt{2\left(x+1\right)\left(x+3\right)}+\sqrt{\left(x-1\right)\left(x+1\right)}-2\left(x+1\right)=0\)
\(\Leftrightarrow\sqrt{x+1}\left(\sqrt{2\left(x+3\right)}+\sqrt{x-1}-2\sqrt{x+1}\right)=0\)
Suy ra x=-1 là nghiệm và pt \(\sqrt{2\left(x+3\right)}+\sqrt{x-1}=2\sqrt{x+1}\)
\(\Leftrightarrow2\left(x+3\right)+x-1+2\sqrt{2\left(x+3\right)\left(x-1\right)}=4\left(x+1\right)\)
\(\Leftrightarrow2\sqrt{2\left(x+3\right)\left(x-1\right)}=x-1\)
\(\Leftrightarrow8\left(x+3\right)\left(x-1\right)-\left(x-1\right)^2=0\)
\(\Leftrightarrow\left(x-1\right)\left(8x+24-x+1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(7x+25\right)=0\Rightarrow x=1\) (thỏa và 7x+25=0 loại do điều kiện....)
b nghiệm xấu quá để mình xem lại :v
\(\Leftrightarrow\sqrt{2x+6}+\sqrt{x-1}=2\sqrt{x+1}\)
\(\Leftrightarrow\sqrt{2x+6}-2\sqrt{2}+\sqrt{x-1}=2\sqrt{x+1}-2\sqrt{2}\)
\(\Leftrightarrow\frac{2\left(x-1\right)}{\sqrt{2x+6}+2\sqrt{2}}+\sqrt{x-1}=\frac{2\sqrt{x-1}}{\sqrt{x+1}+2\sqrt{2}}\)
\(\Leftrightarrow\frac{2\sqrt{x-1}}{\sqrt{2x+6}+2\sqrt{2}}+1=\frac{2\sqrt{x-1}}{\sqrt{x+1}+1\sqrt{2}}\)
đến đây thì chịu
tìm đc 1 nghiệm là -1;1,nên bình phương lên
Sr tui bj cuồng liên hợp làm mãi cách này có lố ko nhỉ :v
Đk:\(x\ge\frac{8}{3}\)
\(pt\Leftrightarrow4x-2-8-\left(3\sqrt{5x-6}-9\right)=\sqrt{3x-8}-1\)
\(\Leftrightarrow4x-2-10-\frac{9\left(5x-6\right)-81}{3\sqrt{5x-6}+9}=\frac{3x-8-1}{\sqrt{3x-8}+1}\)
\(\Leftrightarrow4\left(x-3\right)-\frac{45\left(x-3\right)}{3\sqrt{5x-6}+9}-\frac{3\left(x-3\right)}{\sqrt{3x-8}+1}=0\)
\(\Leftrightarrow\left(x-3\right)\left(4-\frac{45}{3\sqrt{5x-6}+9}-\frac{3}{\sqrt{3x-8}+1}\right)=0\)
Dễ thấy: \(4-\frac{45}{3\sqrt{5x-6}+9}-\frac{3}{\sqrt{3x-8}+1}>0\forall x\ge\frac{8}{3}\)
\(\Rightarrow x-3=0\Rightarrow x=3\)
a) \(\sqrt{2x-1}=\sqrt{5}\)
ĐK : \(x\ge\frac{1}{2}\)
Bình phương hai vế
pt <=> \(2x-1=25\)
<=> \(2x=26\)
<=> \(x=13\left(tm\right)\)
Vậy S = { 13 }
b) \(\sqrt{4-5x}=12\)
ĐK : \(x\le\frac{4}{5}\)
Bình phương hai vế
pt <=> \(4-5x=144\)
<=> \(-5x=140\)
<=> \(x=-28\left(tm\right)\)
Vậy S = { -28 }
c) \(\sqrt{x^2+6x+9}=3x-1\)< chắc hẳn là như này :]>
<=> \(\sqrt{\left(x+3\right)^2}=3x-1\)
<=> \(\left|x+3\right|=3x-1\)
<=> \(\orbr{\begin{cases}x+3=3x-1\left(x\ge-3\right)\\-3-x=3x-1\left(x< -3\right)\end{cases}}\)
<=> \(\orbr{\begin{cases}x=2\left(tm\right)\\x=-\frac{1}{2}\left(ktm\right)\end{cases}}\)
Vậy S = { 2 }
d) \(2\sqrt{x}\le\sqrt{10}\)
ĐK : \(x\ge0\)
Bình phương hai vế
bpt <=> \(4x\le10\)
<=> \(x\le\frac{10}{4}\)
Kết hợp với ĐK => Nghiệm của bất phương trình là \(0\le x\le\frac{10}{4}\)
a) \(ĐKXĐ:x\ge\frac{1}{2}\)
\(\sqrt{2x-1}=\sqrt{5}\)\(\Leftrightarrow2x-1=5\)
\(\Leftrightarrow2x-1=5\)\(\Leftrightarrow2x=6\)
\(\Leftrightarrow x=3\)( thỏa mãn ĐKXĐ )
Vậy nghiệm của phương trình là \(x=3\)
b) \(ĐKXĐ:x\le\frac{4}{5}\)
\(\sqrt{4-5x}=12\)\(\Leftrightarrow4-5x=144\)( bình phương 2 vế )
\(\Leftrightarrow5x=-140\)\(\Leftrightarrow x=-28\)( thỏa mãn ĐKXĐ )
Vậy nghiệm của phương trình là \(x=-28\)
c) \(ĐKXĐ:x\ge\frac{1}{3}\)
\(\sqrt{x^2+6x+9}=3x-1\)
\(\Leftrightarrow\sqrt{\left(x+3\right)^2}=3x-1\)
\(\Leftrightarrow\left|x+3\right|=3x-1\)
+) TH1: Nếu \(x+3< 0\)\(\Leftrightarrow x< -3\)
thì \(\left|x+3\right|=-\left(x+3\right)=-x-3\)
\(\Rightarrow-x-3=3x-1\)\(\Leftrightarrow4x=-2\)
\(\Leftrightarrow x=\frac{-1}{2}\)( không thỏa mãn ĐKXĐ )
+) TH2: \(x+3\ge0\)\(\Rightarrow x\ge-3\)
thì \(\left|x+3\right|=x+3\)
\(\Rightarrow x+3=3x-1\)\(\Leftrightarrow2x=4\)
\(\Leftrightarrow x=2\)( thỏa mãn ĐKXĐ )
Vậy nghiệm của phương trình là \(x=2\)
Gợi ý:
ĐK: \(x\ge-5\)
pt <=> \(2\sqrt{2x^2+5x+12}+2\sqrt{2x^2+3x+2}=2x+10\)
<=> \(2x^2+5x+12+2\sqrt{2x^2+5x+12}+1-2x^2-3x-2+2\sqrt{2x^2+3x+2}-1=0\)
<=> \(\left(\sqrt{2x^2+5x+12}+1\right)^2-\left(\sqrt{2x^2+3x+2}-1\right)^2=0\)
<=> \(\left(\sqrt{2x^2+5x+12}+\sqrt{2x^2+3x+2}\right)\left(\sqrt{2x^2+5x+12}-\sqrt{2x^2+3x+2}+2\right)=0\)
đến đây bn giải từng trường hợp ra nhé
Uầy , cách CTV Khánh làm đồ sộ vậy ? Bài này nhân liên hợp là ra mà . Và cái điều kiện x > -5 là điều kiện bình phương chớ ko phải ĐKXĐ đâu -.-
\(ĐKXĐ:x\in R\)
Vì VT > 0 nên VP > 0
<=> x + 5 > 0
<=> x > -5
Ta có: \(\sqrt{2x^2+5x+12}+\sqrt{2x^2+3x+2}=x+5\)
\(\Leftrightarrow\frac{\left(\sqrt{2x^2+5x+12}+\sqrt{2x^2+3x+2}\right)\left(\sqrt{2x^2+5x+12}-\sqrt{2x^2+3x+2}\right)}{\sqrt{2x^2+5x+12}-\sqrt{2x^2+3x+2}}=x+5\)
\(\Leftrightarrow\frac{2x^2+5x+12-2x^2-3x-2}{\sqrt{2x^2+5x+12}-\sqrt{2x^2+3x+2}}=x+5\)
\(\Leftrightarrow\frac{2x+10}{\sqrt{2x^2+5x+12}-\sqrt{2x^2+3x+2}}=x+5\)
\(\Leftrightarrow\frac{2\left(x+5\right)}{\sqrt{2x^2+5x+12}-\sqrt{2x^2+3x+2}}-\left(x+5\right)=0\)
\(\Leftrightarrow\left(x+5\right)\left(\frac{2}{\sqrt{2x^2+5x+12}-\sqrt{2x^2+3x+2}}-1\right)=0\)
|_____________________A______________________|
Vì \(A>0\forall x\ge5\)
Nên x + 5 = 0
<=> x = -5 (Tm ĐKXĐ)