K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 3 2017

mình vẽ hình luôn nhé:

A B C D I F E

a)b) bạn đã làm rồi đúng không

c)ta có AB//CD mà F thuộc CD nên AB//CF

\(\Rightarrow\dfrac{EB}{FB}=\dfrac{AE}{AC}\) (1)

ta có BC//AD mà I thuộc AD nên BC//AI

\(\Rightarrow\dfrac{BE}{BI}=\dfrac{EC}{AC}\) (2)

từ (1) và (2)\(\Rightarrow\dfrac{BE}{BI}+\dfrac{BE}{BF}=\dfrac{EC}{AC}+\dfrac{AE}{AC}\\ \Leftrightarrow BE\left(\dfrac{1}{BI}+\dfrac{1}{BF}\right)=\dfrac{AC}{AC}\Leftrightarrow BE\left(\dfrac{1}{BI}+\dfrac{1}{BF}\right)=1\\ \Leftrightarrow\dfrac{1}{BE}=\dfrac{1}{BI}+\dfrac{1}{BF}\)

21 tháng 3 2017

Ai cho hỏi đề thi

10 tháng 8 2016

bài mấy vậy?

10 tháng 8 2016

bài 2 và bài 3 hả bn ??? hihi

Bài 2: 

Xét ΔABC vuông tại A có \(BC^2=AB^2+AC^2\)

hay BC=10(cm)

Ta có: ΔABC vuông tại A

mà AM là đường trung tuyến

nên AM=BC/2=5(cm)

26 tháng 10 2017

Câu 1 : Làm tính nhân :

a) \(2x\left(x^2-7x-3\right)\)

\(=2x^3-14x-6x\)

b) \(\left(-2x^3+3y^2-7xy\right).4xy^2\)

\(=-8x^4y^2+3x-28x^2y^3\)

c) \(\left(25x^2+10xy+4y^2\right).\left(5x-2y\right)\)

\(=-50x^2y-20xy^2-8y^3+125x^3+50x^2y+20xy^2\)

\(=-8y^3+125x^3\)

d) \(\left(5x^3-x^2+2x-3\right)\left(4x^2-x+2\right)\)

\(=10x^3-2x^2+4x-6-5x^4+x^3-2x^2+3x+20x^5-4x^4+8x^3-12x^2\)

\(=20x^5-9x^4+19x^3-16x^2-7x-6\)

26 tháng 10 2017

Câu 3: phân tích

a)\(4x-8y\)

\(=4\left(x-2y\right)\)

b)\(x^2+2xy+y^2-16\)

\(=\left(x+y\right)^2-4^2\)

\(=\left(x+y-4\right)\left(x+y+4\right)\)

c)\(3x^2+5x-3xy-5y\)

\(=3x^2-3xy+5x-5y\)

\(=3x\left(x-y\right)+5\left(x-y\right)\)

\(=\left(x-y\right)\left(3x+5\right)\)

30 tháng 4 2017

đề 1 bài 4

xét tam gics ABC và tam giác HBA có

góc B chung

góc BAC = góc BHA (=90 độ)

=> tam giác ABC đồng dạng vs tam giác HBA (g.g)

=> AB/HB=BC/AB=> AB^2=HB *BC

áp dụng đl py ta go trog tam giác vuông ABC có

BC^2 = AB^2 +AC^2=6^2+8^2=100

=> BC =\(\sqrt{100}\)=10 cm

ta có tam giác ABC đồng dạng vs tam giác HBA (cm câu a )

=> AC/AH=BC/BA=>AH=8*6/10=4.8CM

=>AB/BH=AC/AH=> BH=6*4.8/8=3,6cm

=>HC =BC-BH=10-3,6=6,4cm

30 tháng 4 2017

dề 1 bài 1

5x+12=3x -14

<=>5x-3x=-14-12

<=>2x=-26

<=> x=-12

vạy S={-12}

(4x-2)*(3x+4)=0

<=>4x-2=0<=>x=1/2

<=>3x+4=0<=>x=-4/3

vậy S={1/2;-4/3}

đkxđ : x\(\ne2;x\ne-3\)

\(\dfrac{4}{x-2}+\dfrac{1}{x+3}=0\)

<=> 4(x+3)/(x-2)(x+3)+1(x-2)/(x-2)(x+3)

=> 4x+12+x-2=0

<=>5x=-10

<=>x=-2 (nhận)

vậy S={-2}

26 tháng 10 2017

bài 4

a)xy+y2-x-y

=(xy+y2)-(x+y)

=y(x+y)-(x+y)

=(x+y)(y-1)

b)25-x2+4xy-4y2

=25-(x2-4xy+4y2)

=25-(x-2y)2

=[5-(x-2y)][5+(x-2y)]

=(5-x+2y)(5+x-2y)

c) xy+xz-2y-2z

=(xy+xz)-(2y+2z)

=x(y+z)-2(y+z)

=(y+z)(x-2)

26 tháng 10 2017

Bài 7: Cứng minh đẳng thức

b) \(\left(x^{n+3}-x^{n+1}.y^2\right)\div\left(x+y\right)=x^{n+2}-x^{n+1}.y\)

Biến đổi vế trái

\(\left(x^{n+3}-x^{n+1}.y^2\right)\div\left(x+y\right)\)

\(=\left(x^n.x^3-x^n.x.y^2\right)\div\left(x+y\right)\)

\(=x^n.x\left(x^2-y^2\right)\div\left(x+y\right)\)

\(=x^{n+1}\left(x-y\right)\left(x+y\right)\div\left(x+y\right)\)

\(=x^{n+1}\left(x-y\right)\)

Biến đổi vế phải

\(x^{n+2}-x^{n+1}.y\)

\(=x^n.x^2-x^n.x.y\)

\(=x^n.x\left(x-y\right)\)

\(=x^{n+1}\left(x-y\right)\) bằng vế trái (điều phải chứng minh)

19 tháng 7 2017

a, 100

b, 9y

c, 14y

19 tháng 7 2017

a, x2+20x+102

b, 16x2+24xy+9y2

c, y2-2.y.7+49

Bài 6: 

a: Xét ΔHAD vuông tại H và ΔHBA vuông tại H có 

\(\widehat{HAD}=\widehat{HBA}\)

Do đó: ΔHAD\(\sim\)ΔHBA

b: Ta có: ΔHAD\(\sim\)ΔHBA

nên HA/HB=HD/HA

hay \(HA^2=HB\cdot HD\)

30 tháng 8 2017

Câu 1:

Ta có: \(a^3+b^3+c^3-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)\)

Thay \(a+b+c=0\) vào biểu thức ta được:

\(a^3+b^3+c^3-3abc=0\left(a^2+b^2+c^2-ab-ac-bc\right)=0\)

\(\Rightarrow a^3+b^3=3abc\left(đpcm\right)\)

Vậy \(a^3+b^3=3abc\) khi \(a+b+c=0\)

30 tháng 8 2017

Câu 3:

\(\text{a) }x^2+x+1\\ =x^2+2\cdot\dfrac{1}{2}x+\dfrac{1}{4}+\dfrac{3}{4}\\ =\left[x^2+2\cdot\dfrac{1}{2}x+\left(\dfrac{1}{4}\right)^2\right]+\dfrac{3}{4}\\ =\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\\ \text{Ta có : }\left(x+\dfrac{1}{2}\right)^2\ge0\forall x\\ \Rightarrow\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x\\ \text{ Vậy biểu thức luôn nhận giá trị dương}\text{ }\forall x\\ \)

\(\text{b) }2x^2+2x+1\\ =2x^2+2x+\dfrac{1}{2}+\dfrac{1}{2}\\ =2\left(x^2+x+\dfrac{1}{4}\right)+\dfrac{1}{2}\\ =2\left[x^2+2\cdot\dfrac{1}{2}x+\left(\dfrac{1}{2}\right)^2\right]+\dfrac{1}{2}\\ =2\left(x+\dfrac{1}{2}\right)^2+\dfrac{1}{2}\\ \text{Ta có: }2\left(x+\dfrac{1}{2}\right)^2\forall x\\ 2\left(x+\dfrac{1}{2}\right)^2+\dfrac{1}{2}\forall x\\ \text{Vậy giá trị của biểu thức luôn nhận giá trị dương }\forall x\\ \)