Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(4x-x^2-5< 0\)
\(=\left(-x^2-4x\right)-5=-\left(x^2-2x.2+4-4\right)-5=-\left(x-2\right)^2+4-5\)
\(=-\left(x^2-2x\right)-1\)
Vì \(-\left(x^2-2x\right)\le0\)với mọi x nên \(-\left(x-2\right)^2-1< 0\)với mọi x
Vậy \(4x-x^2-5< 0\)với mọi x ( đpcm )
4x - x2 - 5 < 0 \(\forall\)x
Ta có : 4x - x2 - 5
= -x2 + 4x - 5
= - ( x2 - 4x + 5 )
= - ( x2 - 2.x.2 + 22 - 1 )
= - [( x - 2 )2 - 1 ]
Vì - ( x - 2 ) \(\le\)0 \(\forall\)x
\(\Leftrightarrow\)- ( x - 2 ) - 1 \(\le\)0 \(\forall\)x
Vậy .....
a) \(x>2x\)
\(\Rightarrow x-2x>0\)
\(x\left(1-2\right)>0\)
\(-x>0\)
\(\Rightarrow x< 0\)
b) \(\left(x-1\right)\left(x-2\right)>0\)
\(\Rightarrow\orbr{\begin{cases}x-1>0;x-2>0\\x-1< 0;x-2< 0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x>2\\x< 1\end{cases}}\)
c) \(\left(x-2\right)^2.\left(x+1\right)\left(x-4\right)< 0\)
Mà \(\left(x-2\right)^2\ge0\)
\(\Rightarrow\left(x+1\right)\left(x-4\right)< 0\)
Mà \(x+1>x-4\)
\(\Rightarrow\hept{\begin{cases}x+1>0\\x-4< 0\end{cases}}\)
\(\Rightarrow-1< x< 4\)
d) \(x^3< x^2\)
\(\Rightarrow x^3-x^2< 0\)
\(\Rightarrow x^2\left(x-1\right)< 0\)
\(x^2;x-1\)phải \(\ne\)0
Có \(x^2>0\); do đó \(x-1< 0\)
\(\Rightarrow x< 1\)
\(\frac{x}{2}\)= \(\frac{y}{3}\) =\(\frac{z}{4}\)và x + 2y + 3z = -20
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{2}\)=\(\frac{y}{3}\)=\(\frac{z}{4}\)= \(\frac{x+2y+3z}{2+6+12}\)= \(\frac{-20}{20}\)= -1
\(\frac{x}{2}\)= -1 => x = (-1) . 2 = -2
\(\frac{y}{3}\)= -1 => y = (-1) . 3 = -3
\(\frac{z}{4}\)= -1 => z = (-1) . 4 = -4
Vậy x = -2 , y= -3 z= -4
A=\(\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}+...\)
A-\(\frac{1}{5}=\frac{1}{5^2}+\frac{1}{5^3}+...\)
5 -\(\left(A-\frac{1}{5}\right)=5.\left(\frac{1}{5^2}+\frac{1}{5^3}+...1\right)\)
10.\(\left(A-\frac{1}{5}\right)=A\)
\(10A-5=A\)
\(10.A-A=5\)
\(9A=5\)
\(A=\frac{5}{9}\)
T hk pk dung hay sai nha, ma m cu lam ik, co j len t sua
\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=\frac{2009}{2011}\)
\(\Rightarrow\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+....+\frac{2}{x\left(x+1\right)}=\frac{2009}{2011}\)
\(\Rightarrow2.\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2009}{2011}\)
\(\Rightarrow2.\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+.....+\frac{1}{x\left(x+1\right)}\right)=\frac{2009}{2011}\)
\(\Rightarrow2.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+....+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2009}{2011}\)
\(\Rightarrow2.\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{2009}{2011}\Rightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{2009}{4022}\Rightarrow\frac{1}{x+1}=\frac{1}{2011}\Rightarrow x+1=2011\Rightarrow x=2010\)
Vậy x=2010
\(a,\text{Ta có: với mọi}\) \(x\) \(\text{thì}\) \(\left(x+2018\right)^2\ge0\)
\(\Rightarrow\orbr{\begin{cases}x+1>0;x-4< 0\\x+1< 0;x-4>0\end{cases}}\)
TH1: \(\hept{\begin{cases}x+1>0\\x-4< 0\end{cases}\text{}\Rightarrow\hept{\begin{cases}x>-1\\x< 4\end{cases}\Rightarrow-1< x< 4}}\)
TH2: \(\hept{\begin{cases}x+1< 0\\x-4>0\end{cases}\Rightarrow\hept{\begin{cases}x< -1\\x>4\end{cases}\left(loại\right)}}\)
Vậy \(-1< x< 4\)
\(b.x< 2x\)
\(\Rightarrow x-2x< 0\)
\(\Rightarrow x.\left(1-2\right)< 0\)
\(-x< 0\)
\(x>0\)
\(x^3< x^2\)
\(\Rightarrow x^3-x^2< 0\)
\(\Rightarrow x^2\left(x-1\right)< 0\)
\(\Rightarrow\orbr{\begin{cases}x^2>0;\left(x-1\right)< 0\left(nhận\right)\\x^2< 0;\left(x-1\right)>0\left(loại\right)\end{cases}}\)
\(\Rightarrow x< 1\left(x\ne0\right)\)
3 < x < 7/2 = 3,5
=> Không có x
-2<x< -1
=> Không có x
-2,1 < x < -2
=> Không có x
-1 < x \(\le\) 0
x = 0
\(\left|x+2\right|\ge0\)
\(\left|2y+3\right|\ge0\)
suy ra: \(\left|x+2\right|+\left|2y+3\right|\ge0\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}x+2=0\\2y+3=0\end{cases}}\)
\(\Leftrightarrow\)\(\hept{\begin{cases}x=-2\\y=-\frac{3}{2}\end{cases}}\)
Vậy...