K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 10 2018

\(a,\text{Ta có: với mọi}\) \(x\) \(\text{thì}\) \(\left(x+2018\right)^2\ge0\)

\(\Rightarrow\orbr{\begin{cases}x+1>0;x-4< 0\\x+1< 0;x-4>0\end{cases}}\)

TH1: \(\hept{\begin{cases}x+1>0\\x-4< 0\end{cases}\text{​​}\Rightarrow\hept{\begin{cases}x>-1\\x< 4\end{cases}\Rightarrow-1< x< 4}}\)

TH2: \(\hept{\begin{cases}x+1< 0\\x-4>0\end{cases}\Rightarrow\hept{\begin{cases}x< -1\\x>4\end{cases}\left(loại\right)}}\)

Vậy \(-1< x< 4\)

\(b.x< 2x\)

\(\Rightarrow x-2x< 0\)

\(\Rightarrow x.\left(1-2\right)< 0\)

\(-x< 0\)

\(x>0\)

\(x^3< x^2\)

\(\Rightarrow x^3-x^2< 0\)

\(\Rightarrow x^2\left(x-1\right)< 0\)

\(\Rightarrow\orbr{\begin{cases}x^2>0;\left(x-1\right)< 0\left(nhận\right)\\x^2< 0;\left(x-1\right)>0\left(loại\right)\end{cases}}\)

\(\Rightarrow x< 1\left(x\ne0\right)\)

20 tháng 7 2017

a) \(\left(x+1\right)\left(x-2\right)< 0\)

\(\Leftrightarrow\hept{\begin{cases}x+1>0\\x-2< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}x>-1\\x< 2\end{cases}}\Leftrightarrow-1< x< 2\) (đúng)

Hoặc \(\hept{\begin{cases}x+1< 0\\x-2>0\end{cases}}\) (vô lý)

=> \(-1< x< 2\)

b) \(\left(x-2\right)\left(x+\frac{2}{3}\right)>0\)

Bất đẳng thức xảy ra khi 2 thừa số đồng dấu .

\(\left(1\right)\hept{\begin{cases}x-2>0\\x+\frac{2}{3}>0\end{cases}}\Rightarrow\hept{\begin{cases}x>2\\x>\frac{-2}{3}\end{cases}}\Rightarrow x>2\)

\(\left(2\right)\hept{\begin{cases}x-2< 0\\x+\frac{2}{3}< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}x< 2\\x< \frac{-2}{3}\end{cases}}\Rightarrow x< \frac{-2}{3}\)

Vậy \(\hept{\begin{cases}x>2\\x< -\frac{2}{3}\end{cases}}\) thì thõa mãn 

20 tháng 7 2017

a) Để (x+1)(x-2)<0 khi x+1 và x-2 trái dấu 

Mà x+1 > x-2 nên \(\hept{\begin{cases}x+1>0\\x-2< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x>-1\\x< 2\end{cases}}}\)

=> -1 < x < 2

Vậy -1 < x < 2

b) Đề \(\left(x-2\right)\left(x+\frac{2}{3}\right)>0\) khi x+2 và \(\frac{2}{3}\) cùng dấu

Với x+2 và \(x+\frac{2}{3}\) cùng dương : \(\hept{\begin{cases}x-2>0\\x+\frac{2}{3}>0\end{cases}}\Leftrightarrow\hept{\begin{cases}x>2\\x>\frac{-2}{3}\end{cases}}\Rightarrow x>2\)

Với x+2 và \(x+\frac{2}{3}\) cùng âm : \(\hept{\begin{cases}x-2< 0\\x+\frac{2}{3}< 0\end{cases}\Leftrightarrow}\hept{\begin{cases}x< 2\\x< \frac{-2}{3}\end{cases}}\Rightarrow x< \frac{-2}{3}\)

Vậy x>2 hoặc x < \(\frac{2}{3}\)

19 tháng 6 2016

a. \(1-2x< 7\)

mà: \(1-n\le1\)với mọi n

\(\Rightarrow2x=n\Rightarrow x=\frac{n}{2}\)với mọi n

b.để: (x-1).(x-2)>0

=> x-1>0hoặc x-2<0

=>x>1hoặc x<2

(mik chỉ làm 2 câu mẫu thôi, bạn cố gắng tự làm nha, rất vui được kết bạn với bạn)

8 tháng 7 2016

a) \(x>2x\)

\(\Rightarrow x-2x>0\)

\(x\left(1-2\right)>0\)

\(-x>0\)

\(\Rightarrow x< 0\)

b) \(\left(x-1\right)\left(x-2\right)>0\)

\(\Rightarrow\orbr{\begin{cases}x-1>0;x-2>0\\x-1< 0;x-2< 0\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x>2\\x< 1\end{cases}}\)

c) \(\left(x-2\right)^2.\left(x+1\right)\left(x-4\right)< 0\)

Mà \(\left(x-2\right)^2\ge0\)

\(\Rightarrow\left(x+1\right)\left(x-4\right)< 0\)

Mà \(x+1>x-4\)

\(\Rightarrow\hept{\begin{cases}x+1>0\\x-4< 0\end{cases}}\)

\(\Rightarrow-1< x< 4\)

d) \(x^3< x^2\)

\(\Rightarrow x^3-x^2< 0\)

\(\Rightarrow x^2\left(x-1\right)< 0\)

\(x^2;x-1\)phải \(\ne\)0

Có  \(x^2>0\); do đó \(x-1< 0\)

\(\Rightarrow x< 1\)

17 tháng 10 2018

a, 1 - 2x < 7

=> -2x < 6

=> x < -3

=> x thuộc {-4; -5; -6; ...}

b, \(\left(x-1\right)\left(x-2\right)>0\)

th1 :

\(\hept{\begin{cases}x-1< 0\\x-2< 0\end{cases}\Rightarrow\hept{\begin{cases}x< 1\\x< 2\end{cases}\Rightarrow}x< 1\Rightarrow x\in\left\{0;-1;-2;...\right\}}\)

th2 :

\(\hept{\begin{cases}x-1>0\\x-2>0\end{cases}\Rightarrow\hept{\begin{cases}x>1\\x>2\end{cases}\Rightarrow}x>2\Rightarrow x\in\left\{3;4;5;...\right\}}\)

vậy_

c tương tự b

17 tháng 10 2018

\(a.1-2x< 7\Leftrightarrow2x< 7+1=8\Leftrightarrow x< 8:2\Leftrightarrow x< 4\)

Vậy x < 4

\(b.\left(x-1\right)\left(x-2\right)>0\)

\(\Leftrightarrow\orbr{\begin{cases}x-1>0;x-2>0\\x-1< 0;x-2< 0\end{cases}}\)

\(TH1\Leftrightarrow\orbr{\begin{cases}x-1>0\\x-2>0\end{cases}\Leftrightarrow\orbr{\begin{cases}x>0+1=1\\x>0+2=2\end{cases}\Rightarrow x>2}}\)

\(TH2\Leftrightarrow\orbr{\begin{cases}x-1< 0\\x-2< 0\end{cases}\Leftrightarrow\orbr{\begin{cases}x< 0+1=1\\x< 0+2=2\end{cases}\Rightarrow}}x< 2\)

Vậy \(x\ne2\)

28 tháng 9 2016

Chắc câu b sai?