Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(x.S - S = x\left( {1 + x + {x^2} + {x^3} + {x^4} + {x^5}} \right) - \left( {1 + x + {x^2} + {x^3} + {x^4} + {x^5}} \right)\)
\(\begin{array}{l} = x + {x^2} + {x^3} + {x^4} + {x^5} + {x^6} - 1 - x - {x^2} - {x^3} - {x^4} - {x^5}\\ = {x^6} - 1 \text{(đpcm)} \end{array}\)
Ta có: \(S=1+x+x^2+x^3+x^4+x^5\)
\(x\cdot S=x\left(1+x+x^2+x^3+x^4+x^5\right)=x+x^2+x^3+x^4+x^5+x^6\)
Do đó: \(x\cdot S-S=\left(x+x^2+x^3+x^4+x^5+x^6\right)-\left(1+x+x^2+x^3+x^4+x^5\right)\)
\(=x+x^2+x^3+x^4+x^5+x^6-1-x-x^2-x^3-x^4-x^5\)
\(=x^6-1\)(đpcm)
Tính A. Câu hỏi của Nguyễn Thị Anh Thư - Toán lớp 8 - Học toán với OnlineMath
x2 - 2x + 3 = ( x2 - 2x + 1 ) + 2 = ( x - 1 )2 + 2 ≥ 2 > 0 ∀ x ( đpcm )
x2 - x + 1 = ( x2 - x + 1/4 ) + 3/4 = ( x - 1/2 )2 + 3/4 ≥ 3/4 > 0 ∀ x ( đpcm )
x2 + 4x + 7 = ( x2 + 4x + 4 ) + 3 = ( x + 2 )2 + 3 ≥ 3 > 0 ∀ x ( đpcm )
-x2 + 4x - 5 = -( x2 - 4x + 4 ) - 1 = -( x - 2 )2 - 1 ≤ -1 < 0 ∀ x ( đpcm )
-x2 - x - 1 = -( x2 + x + 1/4 ) - 3/4 = -( x + 1/2 )2 - 3/4 ≤ -3/4 < 0 ∀ x ( đpcm )
-4x2 - 4x - 2 = -4( x2 + x + 1/4 ) - 1 = -4( x + 1/2 )2 - 1 ≤ -1 < 0 ∀ x ( đpcm )
\(\hept{\begin{cases}x-1=a\\y-2=b\\z-3=c\end{cases}}\Rightarrow a+b+c=x+y+z-6=0\).
Ta có:
\(\left(a+b+c\right)^3=a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)
\(\Leftrightarrow a+b=0\)hoặc \(b+c=0\)hoặc \(c+a=0\).
\(\Leftrightarrow\hept{\begin{cases}a=-b\\c=0\end{cases}}\)hoặc \(\hept{\begin{cases}b=-c\\a=0\end{cases}}\)hoặc \(\hept{\begin{cases}c=-a\\b=0\end{cases}}\).
Khi đó \(P=a^{2021}+b^{2021}+c^{2021}=0\).
Ta có x×S = x + x2 + x3 + x4 + x5 + x6
=> x×S - S = x + x2 + x3 + x4 + x5 + x6 - (1+ x + x2 + x3 + x4 + x5) = x6 - 1
\(x = {-b \pm \sqrt{b^2-4ac} \over 2a}\)