Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(x^2+x+4=x^2+x+\frac{1}{4}+\frac{15}{4}=\left(x+\frac{1}{2}\right)^2+\frac{15}{4}>0\left(\forall x\right)\)
+) \(\left(x-1\right)\left(x^2+x+4\right)=0\)
\(\Leftrightarrow x-1=0\Leftrightarrow x=1\)
\(\left(x-1\right)\left(x^2+x+4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x^2+x+4=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x^2+x=-4\end{cases}}\)
+) x2 + x = - 4
<=> ( x + 1/2 )2 = - 4 + 1/4 = -15/4
Mà ( x + 1/2 )2 lớn hơn hoặc bằng 0 với mọi x
=> x2 + x + 4 = 0 ktm
Vậy pt = 0 <=> x = 1
a) \(x^4+2x^3-2x^2+2x-3=0\)
\(\Leftrightarrow x^4-x^3+3x^3-3x^2+x^2-x+3x-3=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^3+3x^2+x+3\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-1=0\\x^3+3x^2+x+3=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\\\left(x+3\right)\left(x^2+1\right)=0\left(1\right)\end{cases}}\)
Giải (1) : \(\left(x+3\right)\left(x^2+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+3=0\\x^2+1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-3\\x^2=-1\end{cases}}\)
Mà \(x^2\)>0
\(\Rightarrow\)pt vô nghiệm
Vậy \(x\in\left(-3;1\right)\)
\(\)
\(x^2-12x-2160=0\)
\(=>x^2-2.x.6+36-2196=0\)
\(=>\left(x-6\right)^2-2196=0\)
\(=>\left(x-6\right)^2=2196\)
\(=>\orbr{\begin{cases}x-6=-2196\\x-6=2196\end{cases}=>\orbr{\begin{cases}x=6-6\sqrt{61}\\x=6+6\sqrt{61}\end{cases}}}\)
Mik thề ko đúng mik sẽ ko bao giờ lên olm nữa
x mũ 2 trừ 12 x bằng 2160
suy ra ta có 2160 chia cho 12 bằng 18
\(x^5-x^4+3x^3+3x^2-x+1=0\)
\(\Leftrightarrow x^5+x^4-2x^4-2x^3+5x^3+5x^2-2x^2-2x+x+1=0\)
\(\Leftrightarrow x^4\left(x+1\right)-2x^3\left(x+1\right)+5x^2\left(x+1\right)-2x\left(x+1\right)+\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^4-2x^3+5x^2-2x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\x^4-2x^3+5x^2-2x+1=0\left(#\right)\end{cases}}\)
\(\Leftrightarrow x=-1\)(vì biểu thức # vô nghiệm) (cái này bạn tự cm)
vậy....
a) Ta có : (2x + 5)2 = (x + 2)2
<=> 4x2 + 25 = x2 + 4
<=> 4x2 - x2 = 4 - 25
<=> 3x2 = -21
<=> x2 = -21 : 3
<=> x2 = -7
Đề sao sao
a) \(\left(2x+5\right)^2=\left(x+2\right)^2\)
\(\Leftrightarrow\left(2x+5\right)^2-\left(x+2\right)^2=0\)
\(\Leftrightarrow\left(2x+5+x+2\right)\left(2x+5-x-2\right)=0\)
\(\Leftrightarrow\left(3x+7\right)\left(x+3\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=-\frac{7}{3}\\x=-3\end{cases}}\)
vậy.............
b) \(x^2-5x+6=0\)
\(\Leftrightarrow\left(x^2-2x\right)-\left(3x-6\right)=0\)
\(\Leftrightarrow x\left(x-2\right)-3\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x-2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-3=0\\x-2=0\end{cases}\Rightarrow\orbr{\begin{cases}x=3\\x=2\end{cases}}}\)
vậy.................
c) hình như sai đề
a) \(\left(y-1\right)^2=9\)
\(\Rightarrow\left(y-1\right)^2=3^2=\left(-3\right)^2\)
\(\Rightarrow x-1=3\Rightarrow x=4\)
\(\Rightarrow x-1=-3\Rightarrow x=-2\)
Vậy: \(x=4\) hoặc \(-2\)
\(x^2-4+x+2=0\)
\(\Leftrightarrow\left(x+2\right)\left(x-2\right)+\left(x+2\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+2=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=1\end{matrix}\right.\)
x2-4+x+2
=(x2-22)+x+2)
=(x-2)*(x+2)+(x+2)
=(x+2)*(x-2+1)
=(x+2)*(x-1)