K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 4 2017

a) x4 – 5x2+ 4 = 0.

Đặt x2 = t ≥ 0, ta có: t2 – 5t + 4 = 0; t1 = 1, t2 = 4

Nên: x1 = -1, x2 = 1, x3 = -2, x4 = 2.

b) 2x4 – 3x2 – 2 = 0.

Đặt x2 = t ≥ 0, ta có: 2t2 – 3t – 2 = 0; t1 = 2, t2 = (loại)

Vậy: x1 = √2; x2 = -√2

c) 3x4 + 10x2 + 3 = 0.

Đặt x2 = t ≥ 0, ta có: 3t2 + 10t + 3 = 0; t1 = -3(loại), t2 = (loại)

Phương trình vô nghiệm.



4 tháng 4 2017

a) x4 – 5x2+ 4 = 0.

Đặt x2 = t ≥ 0, ta có: t2 – 5t + 4 = 0; t1 = 1, t2 = 4

Nên: x1 = -1, x2 = 1, x3 = -2, x4 = 2.

b) 2x4 – 3x2 – 2 = 0.

Đặt x2 = t ≥ 0, ta có: 2t2 – 3t – 2 = 0; t1 = 2, t2 = (loại)

Vậy: x1 = √2; x2 = -√2

c) 3x4 + 10x2 + 3 = 0.

Đặt x2 = t ≥ 0, ta có: 3t2 + 10t + 3 = 0; t1 = -3(loại), t2 = (loại)

Phương trình vô nghiệm.

nhớ like

6 tháng 4 2017

a). Đặt \(x^2=y\) \(\left(y\ge0\right)\) ta có ;

\(3y^2-12y+9=0\)

\(\Leftrightarrow y^2-4y+3=0\)

Nhận xét : \(a+b+c=1+\left(-4\right)+3=0\)

\(\Rightarrow y_1=1\) (TM \(y\ge0\))

\(y_2=\dfrac{3}{1}=3\)

Với \(y=y_1=1\Rightarrow x^2=1\Leftrightarrow x_1=1;x_2=-1\)

Với \(y=y_2=3\Rightarrow x^2=3\Leftrightarrow x_3=\sqrt{3};x_4=-\sqrt{3}\)

Vậy \(x_1=1;x_2=-1;x_3=\sqrt{3};x_4=-\sqrt{3}\) là các giá trị cần tìm

b) . Đặt \(x^2=y\) \(\left(y\ge0\right)\) ta có ;

\(2y^2+3y-2=0\)

\(\Delta_y=3^2-4\cdot2\cdot\left(-2\right)=9+16=25\) \(\left(\sqrt{\Delta}=5\right)\)

\(\Delta>0\) nên pt có 2 nghiệm phân biệt

\(\Rightarrow\)\(y_1=\dfrac{-3+5}{2\cdot2}=\dfrac{1}{2}\) (TM \(y\ge0\) )

\(y_2=\dfrac{-3-5}{2\cdot2}=-2\) (KTM \(y\ge0\) )

Với \(y=y_1=\dfrac{1}{2}\Rightarrow x^2=\dfrac{1}{2}\Leftrightarrow x_1=\dfrac{1}{4};x_2=-\dfrac{1}{4}\)

Vậy \(x_1=\dfrac{1}{4};x_2=-\dfrac{1}{4}\) là các giá trị cần tìm

c) Đặt \(x^2=y\) \(\left(y\ge0\right)\) ta có ;

\(y^2+5y+1=0\)

\(\Delta_y=5^2-4\cdot1\cdot1=25-4=21\)

\(\Delta>0\) nên pt có 2 nghiệm phân biệt

\(\Rightarrow y_1=\dfrac{-5+\sqrt{21}}{2\cdot1}=\dfrac{-5+\sqrt{21}}{2}\) (KTM \(y\ge0\))

\(y_2=\dfrac{-5-\sqrt{21}}{2\cdot1}=\dfrac{-5-\sqrt{21}}{2}\) (KTM \(y\ge0\))

Vậy pt đã cho vô nghiệm

10 tháng 4 2017

phần b sai rồi

b, 2x4+3x2-2=0

Đặt x2=t (t>0) ta có

2t2 + 3t-2=0

\(\Delta\)=32-4.2.(-2)=25 \(\Rightarrow\)\(\sqrt{\Delta}\)=5

\(\Delta\)>0 nên PT có 2 nghiệm phân biệt

t1=\(\dfrac{-3+5}{2.2}=\dfrac{1}{2}\) (thỏa mãn)

t2=\(\dfrac{-3-5}{2.2}=-2\) (loại)

với t1=\(\dfrac{1}{2}\) => x2=\(\dfrac{1}{2}\) => x1=\(\pm\sqrt{\dfrac{1}{2}}\) =>x1=\(\pm\dfrac{\sqrt{2}}{2}\)

vậy PT đã cho có 2 nghiệm phân biệt là x1=\(-\dfrac{\sqrt{2}}{2}\) ;x2=\(\dfrac{\sqrt{2}}{2}\)

13 tháng 4 2017

Câu c;d giải \(\Delta\)

Các câu còn lại là phương trình trùng phương, mình chỉ làm 1 câu thôi. Các câu sau tương tự

a/ \(x^4-2x^2-8=0\left(1\right)\)

Đặt: \(x^2=t\left(t\ge0\right)\)

\(\left(1\right)\Rightarrow t^2-2t-8=0\)

( a = 1; b = -2; c = -8 )

\(\Delta=b^2-4ac\) 

   \(=\left(-2\right)^2-4.1.\left(-8\right)\)

   \(=36>0\)

\(\sqrt{\Delta}=\sqrt{36}=6\)

Pt có 2 nghiệm phân biệt:

\(t_1=\frac{-b-\sqrt{\Delta}}{2a}=\frac{2-6}{2.1}=-2\left(l\right)\)

\(t_2=\frac{-b+\sqrt{\Delta}}{2a}=\frac{2+6}{2.1}=4\left(n\right)\Rightarrow x^2=4\Leftrightarrow x=2hayx=-2\)

Vậy: S = {-2;2}

18 tháng 7 2015

dùng phương pháp đặt ẩn phụ

13 tháng 8 2018

a) \(3x^3-x+2=0\)

\(\Leftrightarrow3x^3+3x^2-3x^2-3x+2x+2=0\)

\(\Leftrightarrow3x^2\left(x+1\right)-3x\left(x+1\right)+2\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(3x^2-3x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\3x^2-3x^2+2=0\left(1\right)\end{matrix}\right.\)

Xét phương trình (1):

\(\Delta=9-24=-15< 0\)

\(\Rightarrow\) Phương trình (1) vô nghiệm.

Vậy phương trình đã cho có nghiệm \(x=-1\)

b) \(x^3-6x^2+10x-4=0\)

\(\Leftrightarrow x^3-2x^2-4x^2+8x^{ }+2x^{ }-4=0\)

\(\Leftrightarrow x^2\left(x-2\right)-4x\left(x-2\right)+2\left(x-4\right)=0\)

\(\Leftrightarrow\)\(\left(x-2\right)\left(x^2-4x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x^2-4x+2=0\left(2\right)\end{matrix}\right.\)
Xét phương trình (2):

\(\Delta'=4-2=2>0\)

\(\Rightarrow\) Phương trình (2) có 2 nghiệm phân biệt:

\(x_1=2+\sqrt{2}\)

\(x_2=2-\sqrt{2}\)

Vậy phương trình đã cho có ba nghiệm: \(x_1=2+\sqrt{2};x_2=2-\sqrt{2};x_3=2\)

c)\(3x^3+3x^2+3x+1=0\)

\(\Leftrightarrow\left(x+1\right)^3=0\)

\(\Leftrightarrow x=-1\)

Vậy phương trình đã cho có nghiệm \(x=-1\)

4 tháng 4 2017

a) (3x2 – 5x + 1)(x2 – 4) = 0

=> 3x2 – 5x + 1 = 0 => x =

hoặc x2 – 4 = 0 => x = ±2.

b) (2x2 + x – 4)2 – (2x – 1)2 = 0

⇔ (2x2 + x – 4 + 2x – 1)(2x2 + x – 4 – 2x + 1) = 0

⇔ (2x2 + 3x – 5)(2x2 – x – 3) = 0

=> 2x2 + 3x – 5 = 0 hoặc 2x2 – x – 3 = 0

X1 = 1; x2 = -2,5; x3 = -1; x4 = 1,5



4 tháng 4 2017

a) (3x2 – 5x + 1)(x2 – 4) = 0

=> 3x2 – 5x + 1 = 0 => x =

hoặc x2 – 4 = 0 => x = ±2.

b) (2x2 + x – 4)2 – (2x – 1)2 = 0

⇔ (2x2 + x – 4 + 2x – 1)(2x2 + x – 4 – 2x + 1) = 0

⇔ (2x2 + 3x – 5)(2x2 – x – 3) = 0

=> 2x2 + 3x – 5 = 0 hoặc 2x2 – x – 3 = 0

X1 = 1; x2 = -2,5; x3 = -1; x4 = 1,5

Nhớ like nha

please

9 tháng 9 2015

a. Phương trình tương đương với \(\left(x^2-2x-1\right)\left(x^2+2x+3\right)=0\leftrightarrow x=1\pm\sqrt{2}.\)

b. Nhân cả hai vế với 3, phương trình tương đương với \(27-27x+9x^2-x^3=2x^3\leftrightarrow\left(3-x\right)^3=2x^3\leftrightarrow3-x=\sqrt[3]{2}x\leftrightarrow x=\frac{3}{1+\sqrt[3]{2}}\leftrightarrow x=\sqrt[3]{4}-\sqrt[3]{2}+1.\)

13 tháng 3 2018

Ai đó giải cụ thể hơn đc không