Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bạn vào đây tham khảo :
Câu hỏi của Minh Hiền - Toán lớp 8 - Học toán với OnlineMath
https://olm.vn/hoi-dap/detail/18308516891.html
giai phuong trinh x^4+2x^3-4x^2-5x-6? | Yahoo Hỏi & Đáp
https://vn.answers.yahoo.com/question/index?qid=20120708195230AAFGVYu
\(a,\sqrt{x-2}\left(1-3\sqrt{x+2}\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=2\\\sqrt{x+2}=\frac{1}{3}\end{cases}\Rightarrow}\orbr{\begin{cases}x=2\\x=-\frac{17}{9}\left(l\right)\end{cases}}\)
\(b,\Leftrightarrow\left(5\sqrt{x}-12\right)\left(\sqrt{x}+1\right)=0\)
Bạn giải nốt nhá
Mấy bài này đều là toán lớp 8 mà. Mình mới lớp 8 mà cũng làm được nữa là bạn lớp 9 mà không làm được afk?
a) (3x - 2)(4x + 5) = 0
⇔ 3x - 2 = 0 hoặc 4x + 5 = 0
1) 3x - 2 = 0 ⇔ 3x = 2 ⇔ x = 2/3
2) 4x + 5 = 0 ⇔ 4x = -5 ⇔ x = -5/4
Vậy phương trình có tập nghiệm S = {2/3;−5/4}
b) (2,3x - 6,9)(0,1x + 2) = 0
⇔ 2,3x - 6,9 = 0 hoặc 0,1x + 2 = 0
1) 2,3x - 6,9 = 0 ⇔ 2,3x = 6,9 ⇔ x = 3
2) 0,1x + 2 = 0 ⇔ 0,1x = -2 ⇔ x = -20.
Vậy phương trình có tập hợp nghiệm S = {3;-20}
c) (4x + 2)(x2 + 1) = 0 ⇔ 4x + 2 = 0 hoặc x2 + 1 = 0
1) 4x + 2 = 0 ⇔ 4x = -2 ⇔ x = −1/2
2) x2 + 1 = 0 ⇔ x2 = -1 (vô lí vì x2 ≥ 0)
Vậy phương trình có tập hợp nghiệm S = {−1/2}
d) (2x + 7)(x - 5)(5x + 1) = 0
⇔ 2x + 7 = 0 hoặc x - 5 = 0 hoặc 5x + 1 = 0
1) 2x + 7 = 0 ⇔ 2x = -7 ⇔ x = −7/2
2) x - 5 = 0 ⇔ x = 5
3) 5x + 1 = 0 ⇔ 5x = -1 ⇔ x = −1/5
Vậy phương trình có tập nghiệm là S = {−7/2;5;−1/5}
ĐK \(\frac{-11}{5}\le x\le6\)
Ta có: \(\sqrt{5x+11}-\sqrt{6-x}+5x^2-14x-60=0\)
\(\Leftrightarrow\left(\sqrt{5x+11}-6\right)-\left(\sqrt{6-x}-1\right)+\left(x-5\right)\left(5x+11\right)=0\)
\(\Leftrightarrow\frac{5\left(x-5\right)}{\sqrt{5x+11}+6}+\frac{x-5}{\sqrt{6-x}+1}+\left(x-5\right)\left(5x+11\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left[\frac{5}{\sqrt{5x+11}+6}+\frac{1}{\sqrt{6-x}}+5x+11\right]=0\)
\(\Leftrightarrow x=5\)(Do \(\frac{5}{\sqrt{5x+11}+6}+\frac{1}{\sqrt{6-x}}+5x+11>0\)với \(\frac{-11}{5}\le x\le6\)
Vậy pt đã cho có nghiệm duy nhất x=5
Lớp 9 đã học giải phương trình bậc 3 chưa nhỉ ?
\(4x^2-5x+6\sqrt{x}-8=0\)
\(< =>\left(4x^2-5x+6\sqrt{x}-8\right)x=0.x\)
\(< =>4x^3-5x^2-2x=0\)(đến đây giải pt bậc 3 hoặc làm theo mình)
\(< =>x\left(4x^2-5x-2\right)=0\)
\(< =>\orbr{\begin{cases}x=0\\4x^2-5x-2=0\left(1\right)\end{cases}}\)
Từ 1 ta có \(\Delta=\left(-5\right)^2-4.4.\left(-2\right)=25+32=57\)
Nên phương trình (1) có 2 nghiệm phân biệt
\(x_1=\frac{5+\sqrt{57}}{8}\)
\(x_2=\frac{5-\sqrt{57}}{8}\)
Vậy tập nghiệm của phương trình trên là \(\left\{0;\frac{5+\sqrt{57}}{8};\frac{5-\sqrt{57}}{8}\right\}\)
ĐK:..
Đặt: \(\sqrt{x}=t\ge0\) ta có phương trình ẩn t :
\(4t^4-5t^2+6t-8=0\)
<=> \(4t^4-\left(t^2-4t+4\right)-4t^2+2t-4=0\)
<=> \(\left(2t^2\right)^2-\left(t-2\right)^2-2\left(2t^2-t+2\right)=0\)
<=> \(\left(2t^2-t+2\right)\left(2t^2+t-2\right)-2\left(2t^2-t+2\right)=0\)
<=> \(\left(2t^2+t-4\right)\left(2t^2-t+2\right)\)= 0
<=> \(\orbr{\begin{cases}2t^2+t-4=0\\2t^2-t+2=0\left(vn\right)\end{cases}}\)
<=> \(\orbr{\begin{cases}t=\frac{-1+\sqrt{33}}{4}\\t=\frac{-1-\sqrt{33}}{4}< 0\left(loai\right)\end{cases}}\)
Khi đó: \(\sqrt{x}=\frac{-1+\sqrt{33}}{4}\Leftrightarrow x=\frac{17-\sqrt{33}}{8}\)tm
Vậy:...
\(x^4+5x^2-6=0\)
\(\Leftrightarrow x^4+6x^2-x^2-6=0\)
\(\Leftrightarrow x^2\left(x^2+6\right)-\left(x^2+6\right)=0\)
\(\Leftrightarrow\left(x^2+6\right)\left(x^2-1\right)=0\)
\(\Leftrightarrow\left(x^2+6\right)\left(x-1\right)\left(x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x=-1\end{cases}}}\)(\(x^2+6>0\forall x\))
Vậy x={-1;1}
\(x^4+5x^2-6=0\)
Đặt \(x^2=t\left(t\ge0\right)\)Khi đó phương trình trở thành
\(t^2+5t-6=0\Leftrightarrow t^2-t+6t-6=0\)
\(\Leftrightarrow t.\left(t-1\right)+6.\left(t-1\right)=0\)
\(\Leftrightarrow\left(t-1\right).\left(t+6\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}t=1\left(TM\right)\\t=-6\left(L\right)\end{cases}}\)
Ta có \(x^2=1\Leftrightarrow x=\pm1\)
Vậy phương trình có 2 nghiệm \(x_1=-1;x_2=1\)