Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(a=2x^2+x-2014\) , \(b=x^2-5x-2013\)
thì \(a^2+4b^2=4ab\Leftrightarrow a^2-4ab+4b^2=0\Leftrightarrow\left(a-2b\right)^2=0\)
Thay vào được \(\left[\left(2x^2+x-2014\right)-2\left(x^2-5x-2013\right)\right]^2=0\)
\(\Leftrightarrow11x+2012=0\Leftrightarrow x=-\frac{2012}{11}\)
Hệ pt \(\Leftrightarrow\hept{\begin{cases}x^2+3y=3x-3xy\left(1\right)\\\left(x^2+3y\right)^2+3x^2y-5x^2=0\left(2\right)\end{cases}}\)
Thay (1) vào (2) ta được: \(x^2\left(9y^2-15y+4\right)=0\Leftrightarrow\hept{\begin{cases}x=0\Rightarrow y=0\\y=\frac{1}{3}\Rightarrow x=1\\y=\frac{4}{3}\Rightarrow x^2+x+4=0\left(VN\right)\end{cases}}\)
CÁM ƠN BẠN NHIỀU, NHƯNG MÌNH LÀM ĐƯỢC BÀI NÀY RỒI, CÁM ƠN VÀ XIN LỖI BẠN !
7. \(S=9y^2-12\left(x+4\right)y+\left(5x^2+24x+2016\right)\)
\(=9y^2-12\left(x+4\right)y+4\left(x+4\right)^2+\left(x^2+8x+16\right)+1936\)
\(=\left[3y-2\left(x+4\right)\right]^2+\left(x-4\right)^2+1936\ge1936\)
Vậy \(S_{min}=1936\) \(\Leftrightarrow\) \(\hept{\begin{cases}3y-2\left(x+4\right)=0\\x-4=0\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}x=4\\y=\frac{16}{3}\end{cases}}\)
8. \(x^2-5x+14-4\sqrt{x+1}=0\) (ĐK: x > = -1).
\(\Leftrightarrow\) \(\left(x+1\right)-4\sqrt{x+1}+4+\left(x^2-6x+9\right)=0\)
\(\Leftrightarrow\) \(\left(\sqrt{x+1}-2\right)^2+\left(x-3\right)^2=0\)
Với mọi x thực ta luôn có: \(\left(\sqrt{x+1}-2\right)^2\ge0\) và \(\left(x-3\right)^2\ge0\)
Suy ra \(\left(\sqrt{x+1}-2\right)^2+\left(x-3\right)^2\ge0\)
Đẳng thức xảy ra \(\Leftrightarrow\) \(\hept{\begin{cases}\left(\sqrt{x+1}-2\right)^2=0\\\left(x-3\right)^2=0\end{cases}}\) \(\Leftrightarrow\) x = 3 (Nhận)
7. \(S=9y^2-12\left(x+4\right)y+\left(5x^2+24x+2016\right)\)
\(=9y^2-12\left(x+4\right)y+4\left(x+4\right)^2+\left(x^2+8x+16\right)+1936\)
\(=\left[3y-2\left(x+4\right)\right]^2+\left(x-4\right)^2+1936\ge1936\)
Vậy \(S_{min}=1936\) \(\Leftrightarrow\) \(\hept{\begin{cases}3y-2\left(x+4\right)=0\\x-4=0\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}x=4\\y=\frac{16}{3}\end{cases}}\)
điều kiện xác đinh \(x\ge-\frac{1}{2}\)
ta có \(x\left(5x^3+2\right)-2\left(\sqrt{2x+1}-1\right)=0\)
\(\Leftrightarrow5x^4+2x-2\sqrt{2x+1}+2=0\Leftrightarrow5x^4+2x+1-2\sqrt{2x+1}+1=0\)
\(\Leftrightarrow5x^4+\left(\sqrt{2x+1}-1\right)^2=0=>\orbr{\begin{cases}5x^4=0\\\sqrt{2x+1}-1=0\end{cases}\Leftrightarrow x=0\left(nhận\right)}\)
zậy \(S=\left\{0\right\}\)
ĐK: \(x\ge\frac{-1}{2}\). PT đã cho có thể viết lại thành
\(5x^4+\left(\sqrt{2x+1}-1\right)^2=0\)
Do \(5x^4\ge0,\left(\sqrt{2x+1}-1\right)^2\ge0\)nên PT trên chỉ thỏa mãn khi \(\hept{\begin{cases}5x^4=0\\\left(\sqrt{2x+1}-1\right)^2=0\end{cases}}\)
Giải hệ này ta được x=0
Vậy PT đã cho có nghiệm duy nhất x=0
\(4\left(\frac{x^2}{2}+5x+4\right)^2\)=\(4\left(2x+1\right)\left(x^2+8x+7\right)\)
\(\Leftrightarrow\left(x^2+10x+8\right)^2=4\left(2x+1\right)\left(x^2+8x+7\right)\)
dat \(2x+1=a,x^2+8x+7=b\) \(\Rightarrow a+b=x^2+10x+8\)
pt tro thanh
\(\left(a+b\right)^2=4ab\Rightarrow a^2+2ab+b^2-4ab=0\)
\(\Leftrightarrow\left(a-b\right)^2=0\Leftrightarrow a=b\Leftrightarrow2x+1=x^2+8x+1\)
\(\Leftrightarrow x^2+6x=0\Leftrightarrow x\left(x+6\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=-6\end{cases}}\)
\(x\left(5x^3+2\right)-2\left(\sqrt{2x+1}-1\right)=0\)
\(\Leftrightarrow5x^4+2x-2\sqrt{2x+1}+2=0\)
\(\Leftrightarrow5x^4+\left(2x+1-2\sqrt{2x+1}+1\right)=0\)
\(\Leftrightarrow5x^4+\left(\sqrt{2x+1}-1\right)^2=0\)
có \(\hept{\begin{cases}5x^4\ge0\\\left(\sqrt{2x+1}-1\right)^2\ge0\end{cases}}\)mà \(5x^4+\left(\sqrt{2x+1}-1\right)^2=0\Rightarrow\hept{\begin{cases}5x^4=0\\\left(\sqrt{2x+1}-1\right)^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x^4=0\\\sqrt{2x+1}=1\end{cases}\Leftrightarrow x=0}\)
vạy x=0 là nghiệm của phương trình
Cre: Đàm Hải Ngọc
cái này dùng liên hợp dễ hơn
\(x\left(5x^3+2\right)-2\left(\sqrt{2x+1}-1\right)=0\left(đk:x\ge-\frac{1}{2}\right)\)
\(< =>x\left(5x^3+2\right)-2.\frac{2x+1-1}{\sqrt{2x+1}+1}=0\)
\(< =>x\left(5x^3+2\right)-x.\frac{4}{\sqrt{2x+1}+1}=0\)
\(< =>x\left(5x^3+2-\frac{4}{\sqrt{2x+1}+1}\right)=0< =>x=0\)
giờ dùng đk đánh giá cái ngoặc to vô nghiệm là ok