Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1, \(sin\left(x+\dfrac{\pi}{6}\right)+cos\left(x+\dfrac{\pi}{6}\right)=\dfrac{\sqrt{6}}{2}\)
⇔ \(\dfrac{\sqrt{2}}{2}sin\left(x+\dfrac{\pi}{6}\right)+\dfrac{\sqrt{2}}{2}cos\left(x+\dfrac{\pi}{6}\right)=\dfrac{\sqrt{3}}{2}\)
⇔ \(sin\left(x+\dfrac{\pi}{6}+\dfrac{\pi}{4}\right)=sin\dfrac{\pi}{4}\)
2, \(\left(\sqrt{3}-1\right)sinx+\left(\sqrt{3}+1\right)cosx=1-\sqrt{3}\)
⇔ \(\dfrac{\left(\sqrt{3}-1\right)}{2\sqrt{2}}sinx+\dfrac{\left(\sqrt{3}+1\right)}{2\sqrt{2}}cosx=\dfrac{1-\sqrt{3}}{2\sqrt{2}}\)
⇔ sinx . si
3.
\(\Leftrightarrow\dfrac{\sqrt{3}}{2}sinx-\dfrac{1}{2}cosx=cos3x\)
\(\Leftrightarrow sin\left(x-\dfrac{\pi}{6}\right)=sin\left(\dfrac{\pi}{2}-3x\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{\pi}{6}=\dfrac{\pi}{2}-3x+k2\pi\\x-\dfrac{\pi}{6}=\dfrac{\pi}{2}+3x+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{6}+\dfrac{k\pi}{2}\\x=-\dfrac{\pi}{3}+k\pi\end{matrix}\right.\)
a.
\(sinx+cosx+\left(sinx+cosx\right)^2+cos^2x-sin^2x=0\)
\(\Leftrightarrow sinx+cosx+\left(sinx+cosx\right)^2+\left(cosx-sinx\right)\left(sinx+cosx\right)=0\)
\(\Leftrightarrow\left(sinx+cosx\right)\left(1+2cosx\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx+cosx=0\\1+2cosx=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}sin\left(x+\frac{\pi}{4}\right)=0\\cosx=-\frac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{\pi}{4}+k\pi\\x=\pm\frac{2\pi}{3}+k2\pi\end{matrix}\right.\)
a/
\(\Leftrightarrow sin2x\left(1+\sqrt{2}sinx\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sin2x=0\\1+\sqrt{2}sinx=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}sin2x=0\\sinx=-\frac{\sqrt{2}}{2}=sin\left(-\frac{\pi}{4}\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x=k\pi\\x=-\frac{\pi}{4}+k2\pi\\x=\frac{5\pi}{4}+k2\pi\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\frac{k\pi}{2}\\x=-\frac{\pi}{4}+k2\pi\\x=\frac{5\pi}{4}+k2\pi\end{matrix}\right.\)
b/
\(\Leftrightarrow2sin2x.cos2x-\frac{1}{2}sin4x+\frac{1}{2}sinx=0\)
\(\Leftrightarrow sin4x-\frac{1}{2}sin4x+\frac{1}{2}sinx=0\)
\(\Leftrightarrow sin4x=-sinx=sin\left(-x\right)\)
\(\Rightarrow\left[{}\begin{matrix}4x=-x+k2\pi\\4x=\pi+x+k2\pi\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\frac{k2\pi}{5}\\x=\frac{\pi}{3}+\frac{k2\pi}{3}\end{matrix}\right.\)
e/
\(sin\left(\frac{3\pi}{2}-sinx\right)=1\)
\(\Leftrightarrow\frac{3\pi}{2}-sinx=\frac{\pi}{2}+k2\pi\)
\(\Leftrightarrow sinx=\pi+k2\pi\)
Mà \(-1\le sinx\le1\Rightarrow-1\le\pi+k2\pi\le1\)
\(\Rightarrow\) Không tồn tại k nguyên thỏa mãn
Pt đã cho vô nghiệm
f/
\(cos^2x-sin^2x+sin4x=0\)
\(\Leftrightarrow cos2x+2sin2x.cos2x=0\)
\(\Leftrightarrow cos2x\left(1+2sin2x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cos2x=0\\sin2x=-\frac{1}{2}=sin\left(-\frac{\pi}{6}\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x=\frac{\pi}{2}+k\pi\\2x=-\frac{\pi}{6}+k2\pi\\2x=\frac{7\pi}{6}+k2\pi\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+\frac{k\pi}{2}\\x=-\frac{\pi}{12}+k\pi\\x=\frac{7\pi}{12}+k\pi\end{matrix}\right.\)
1: =>sin^2(3x)=0
=>sin 3x=0
=>3x=kpi
=>x=kpi/3
2:
\(sinx=1-cos^2x=sin^2x\)
=>\(sin^2x-sinx=0\)
=>sin x(sin x-1)=0
=>sin x=0 hoặc sin x=1
=>x=pi/2+k2pi hoặc x=kpi
4:
sin 2x+sin x=0
=>sin 2x=-sin x=sin(-x)
=>2x=-x+k2pi hoặc 2x=pi+x+k2pi
=>x=pi+k2pi hoặc x=k2pi/3
5: =>cos(x+pi/3)=1/căn 2
=>x+pi/3=pi/4+k2pi hoặc x+pi/3=-pi/4+k2pi
=>x=-pi/12+k2pi hoặc x=-7/12pi+k2pi
2.
\(\Leftrightarrow1-2cos^2\left(\frac{\pi}{4}-\frac{x}{2}\right)+sin\frac{x}{2}sinx-cos\frac{x}{2}sin^2x=0\)
\(\Leftrightarrow-cos\left(\frac{\pi}{2}-x\right)+sinx\frac{x}{2}sinx-cosx\frac{x}{2}sin^2x=0\)
\(\Leftrightarrow-sinx+sin\frac{x}{2}sinx-cos\frac{x}{2}sin^2x=0\)
\(\Leftrightarrow sinx\left(sin\frac{x}{2}-1-cos\frac{x}{2}sinx\right)=0\)
\(\Leftrightarrow sinx\left(sin\frac{x}{2}-1-2cos^2\frac{x}{2}sin\frac{x}{2}\right)=0\)
\(\Leftrightarrow sinx\left(sin\frac{x}{2}-1-2sin\frac{x}{2}\left(1-sin^2\frac{x}{2}\right)\right)=0\)
\(\Leftrightarrow sinx\left(2sin^3\frac{x}{2}-sin\frac{x}{2}-1\right)=0\)
\(\Leftrightarrow sinx\left(sin\frac{x}{2}-1\right)\left(2sin^2\frac{x}{2}+2sin\frac{x}{2}+1\right)=0\)
\(\Leftrightarrow...\)
1.
\(\Leftrightarrow sin2x-4sin\left(x+\frac{\pi}{4}\right)=5\)
Do \(\left\{{}\begin{matrix}sin2x\le1\\-4sin\left(x+\frac{\pi}{4}\right)\le4\end{matrix}\right.\) với mọi x
\(\Rightarrow sin2x-4sin\left(x+\frac{\pi}{4}\right)\le5\)
Đẳng thức xảy ra khi và chỉ khi:
\(\left\{{}\begin{matrix}sin2x=1\\sin\left(x+\frac{\pi}{4}\right)=-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{\pi}{4}+k\pi\\x=-\frac{3\pi}{4}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow x=-\frac{3\pi}{4}+k2\pi\)
Câu 1:
\(\Leftrightarrow sinx.cos\frac{\pi}{3}-cosx.sin\frac{\pi}{3}+2\left(cosx.cos\frac{\pi}{6}+sinx.sin\frac{\pi}{6}\right)=0\)
\(\Leftrightarrow sinx+\frac{1}{\sqrt{3}}cosx=0\)
Nhận thấy \(cosx=0\) không phải nghiệm, chia 2 vế cho \(cosx\)
\(tanx+\frac{1}{\sqrt{3}}=0\Rightarrow tanx=-\frac{1}{\sqrt{3}}\Rightarrow x=\frac{\pi}{6}+k\pi\)
Câu 2:
\(\Leftrightarrow1-cos6x=1+cos2x\)
\(\Leftrightarrow-cos6x=cos2x\)
\(\Leftrightarrow cos\left(\pi-6x\right)=cos2x\)
\(\Leftrightarrow\left[{}\begin{matrix}2x=\pi-6x+k2\pi\\2x=6x-\pi+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{8}+\frac{k\pi}{4}\\x=\frac{\pi}{4}+\frac{k\pi}{2}\end{matrix}\right.\)
Câu 3:
\(\Leftrightarrow sin\left(2x+\frac{\pi}{2}-4\pi\right)+cos2x=1\)
\(\Leftrightarrow sin\left(2x+\frac{\pi}{2}\right)+cos2x=1\)
\(\Leftrightarrow cos2x+cos2x=1\)
\(\Leftrightarrow cos2x=\frac{1}{2}\Rightarrow\left[{}\begin{matrix}2x=\frac{\pi}{3}+k2\pi\\2x=-\frac{\pi}{3}+k2\pi\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{6}+k\pi\\x=-\frac{\pi}{6}+k\pi\end{matrix}\right.\)
Câu 4:
\(\sqrt{2}\left(cosx.cos\frac{3\pi}{4}+sinx.sin\frac{3\pi}{4}\right)=1+sinx\)
\(\Leftrightarrow-cosx+sinx=1+sinx\)
\(\Leftrightarrow cosx=-1\Rightarrow x=\pi+k\pi2\)
Câu 5:
Giống câu 3, chắc bạn ghi nhầm đề
b/ ĐKXĐ: \(cos2x\ne0\Leftrightarrow2x\ne\frac{\pi}{2}+k\pi\Leftrightarrow x\ne\frac{\pi}{4}+\frac{k\pi}{2}\)
\(6sinx-2cos^3x=\frac{10sin2x.cos2x.sinx}{2cos2x}\)
\(\Leftrightarrow6sinx-2cos^3x=5sin2x.sinx\)
\(\Leftrightarrow3sinx-cos^3x=5cosx.sin^2x\)
Nhận thấy \(cosx=0\) ko phải nghiệm, chia 2 vế cho \(cos^3x\)
\(3tanx\left(1+tan^2x\right)-1=5tan^2x\)
\(\Leftrightarrow3tan^3x-5tan^2x+3tanx-1=0\)
\(\Leftrightarrow\left(tanx-1\right)\left(3tan^2x-2tanx+1\right)=0\)
\(\Leftrightarrow tanx=1\Rightarrow x=\frac{\pi}{4}+k\pi\) (ko thỏa mãn ĐKXĐ)
Vậy pt vô nghiệm
d/
\(\Leftrightarrow\left(cos^2x-sin^2x\right)\left(sinx+cosx\right)-4cos^3x\left(sin^2x+cos^2x+2sinx.cosx\right)=0\)
\(\Leftrightarrow\left(cosx-sinx\right)\left(sinx+cosx\right)^2-4cos^3x\left(sinx+cosx\right)^2=0\)
\(\Leftrightarrow\left(cosx-sinx-4cos^3x\right)\left(sinx+cosx\right)^2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx+cosx=0\left(1\right)\\cosx-sinx-4cos^3x=0\left(2\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow sin\left(x+\frac{\pi}{4}\right)=0\Leftrightarrow x+\frac{\pi}{4}=k\pi\)
\(\Rightarrow x=-\frac{\pi}{4}+k\pi\)
Xét \(\left(2\right)\), nhận thấy \(cosx=0\) ko phải nghiệm, chia 2 vế cho \(cos^3x\)
\(\Leftrightarrow\frac{1}{cos^2x}-tanx.\frac{1}{cos^2x}-4=0\)
\(\Leftrightarrow1+tan^2x-tanx\left(1+tan^2x\right)-4=0\)
\(\Leftrightarrow-tan^3x+tan^2x-tanx-3=0\)
\(\Leftrightarrow\left(tanx+1\right)\left(tan^2x-2tanx+3\right)=0\)
\(\Leftrightarrow tanx=-1\Rightarrow x=-\frac{\pi}{4}+k\pi\)
a, \(cos\left(x-\dfrac{\pi}{3}\right)-sin\left(x-\dfrac{\pi}{3}\right)=1\)
\(\Leftrightarrow\sqrt{2}cos\left(x-\dfrac{\pi}{3}-\dfrac{\pi}{4}\right)=1\)
\(\Leftrightarrow cos\left(x-\dfrac{7\pi}{12}\right)=\dfrac{1}{\sqrt{2}}\)
\(\Leftrightarrow x-\dfrac{7\pi}{12}=\pm\dfrac{\pi}{4}+k2\pi\)
...
b, \(\sqrt{3}sin2x+2cos^2x=2sinx+1\)
\(\Leftrightarrow\sqrt{3}sin2x+2cos^2x-1=2sinx\)
\(\Leftrightarrow\dfrac{\sqrt{3}}{2}sin2x+\dfrac{1}{2}cos2x=sinx\)
\(\Leftrightarrow sin\left(2x+\dfrac{\pi}{6}\right)=sinx\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+\dfrac{\pi}{6}=x+k2\pi\\2x+\dfrac{\pi}{6}=\pi-x+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{\pi}{6}+k2\pi\\x=\dfrac{5\pi}{18}+\dfrac{k2\pi}{3}\end{matrix}\right.\)