Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,x^4-16x^2+32x-16=0\)
\(\Leftrightarrow\left(x^4-16\right)-16x\left(x-2\right)=0\)
\(\Leftrightarrow\left(x^4+4\right)\left(x-2\right)\left(x+2\right)-16x\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^3+2x^2-12x+8\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^3-2x^2+4x^2-8x-4x+8\right)=0\)\(\Leftrightarrow\left(x-2\right)\left[x^2\left(x-2\right)+4x\left(x-2\right)-4\left(x-2\right)\right]=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-2\right)\left(x^2+4x-4\right)=0\)
\(\Leftrightarrow\left(x-2\right)^2\left[\left(x+2\right)^2-8\right]=0\Rightarrow\left[{}\begin{matrix}\left(x-2\right)^2=0\\\left(x+2\right)^2-8=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x-2=0\\\left(x+2\right)^2=8\Rightarrow\left[{}\begin{matrix}x+2=\sqrt{8}\\x+2=-\sqrt{8}\end{matrix}\right.\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\sqrt{8}-2\\x=-\sqrt{8}-2\end{matrix}\right.\)
a.
\(\left(2x-1\right)^3+6\left(3x-1\right)^3=2\left(x+1\right)^3+6\left(x+2\right)^3\)
\(\Leftrightarrow\left(2x\right)^3-3.\left(2x\right)^2.1+3.2x.1+1^3+6.\left[\left(3x\right)^3-3.\left(3x\right)^2.1+3.3x.1+1^3\right]=2\left(x^3+3x^2+3x+1\right)+6\left(x^2+3.x^2.2+3.x.2^2+2^3\right)\)
Mk xin lỗi nha, câu c sai đề
c) (x+6)4 + (x+8)4 = 272
a: \(\left(3x-1\right)^2-\left(x+3\right)^3=\left(2-x\right)\left(x^2+2x+4\right)\)
\(\Leftrightarrow9x^2-6x+1-x^3-9x^2-27x-27=8-x^3\)
\(\Leftrightarrow-x^3-33x-26-8+x^3=0\)
=>-33x=34
hay x=-34/33
b: \(\left(x+1\right)\left(x-1\right)\left(x^2+1\right)-\left(x^2-1\right)^2=2\)
\(\Leftrightarrow\left(x^2+1\right)\left(x^2-1\right)-\left(x^2-1\right)^2=2\)
\(\Leftrightarrow x^4-1-x^4+2x^2-1=2\)
\(\Leftrightarrow2x^2=4\)
hay \(x\in\left\{\sqrt{2};-\sqrt{2}\right\}\)
c: \(x^2-2\sqrt{3}x+3=0\)
\(\Leftrightarrow\left(x-\sqrt{3}\right)^2=0\)
hay \(x=\sqrt{3}\)
d: \(\left(x-\sqrt{2}\right)\left(x+\sqrt{2}\right)-\left(x-\sqrt{2}\right)^2=0\)
\(\Leftrightarrow\left(x-\sqrt{2}\right)\left(x+\sqrt{2}-x+\sqrt{2}\right)=0\)
\(\Leftrightarrow x-\sqrt{2}=0\)
hay \(x=\sqrt{2}\)
a: =>5-x+6=12-8x
=>-x+11=12-8x
=>7x=1
hay x=1/7
b: \(\dfrac{3x+2}{2}-\dfrac{3x+1}{6}=2x+\dfrac{5}{3}\)
\(\Leftrightarrow9x+6-3x-1=12x+10\)
=>12x+10=6x+5
=>6x=-5
hay x=-5/6
d: =>(x-2)(x-3)=0
=>x=2 hoặc x=3
c) \(8x^3-1=8x^2+4x+2\)
<=> \(\left(2x-3\right)\left(4x^2+2x+1\right)=0\)
<=> \(2x-3=0\) hoặc \(4x^2+2x+1=0\)
Th1: x=\(\dfrac{3}{2}\)
Th2: Vô nghiệm
Vậy x=\(\dfrac{3}{2}\)
\(\text{a) }\dfrac{2x^2-x-1}{2}-3x^2+x+4=\left(5-x\right)\left(2x+4\right)\\ \Leftrightarrow\left(\dfrac{2x^2-x-1}{2}-3x^2+x+4\right)2=\left(5-x\right)\left(2x+4\right)2\\ \Leftrightarrow2x^2-x-1-6x^2+2x+8=\left(5-x\right)\left(4x+8\right)\\ \Leftrightarrow-4x^2+x+7=20x+40-4x^2-8x\\ \Leftrightarrow-4x^2+x+4x^2-12x=40-7\\ \Leftrightarrow-11x=33\\ \Leftrightarrow x=-3\\ \text{Vậy }S=\left\{-3\right\}\)
\(\text{b) }\dfrac{\left(2x-5\right)\left(3x+7\right)}{4}+2x-1=\dfrac{\left(x-1\right)\left(2x+4\right)}{2}+1\\ \Leftrightarrow\dfrac{\left(2x-5\right)\left(3x+7\right)}{4}+2x-1=\left(x-1\right)\left(x+2\right)+1\\ \Leftrightarrow\left(\dfrac{\left(2x-5\right)\left(3x+7\right)}{4}+2x-1\right)4=\left(x^2-x+2x-2+1\right)4\\ \Leftrightarrow\left(2x-5\right)\left(3x+7\right)+8x-4=\left(x^2+x-1\right)4\\ \Leftrightarrow6x^2-15x+14x-35+8x-4=4x^2+4x-4\\ \Leftrightarrow6x^2+7x-39=4x^2+4x-4\\ \Leftrightarrow6x^2+7x-4x^2-4x-39+4=0\\ \Leftrightarrow2x^2+3x-35=0\\ \Leftrightarrow2x^2+10x-7x-35=0\\ \Leftrightarrow\left(2x^2+10x\right)-\left(7x+35\right)=0\\ \Leftrightarrow2x\left(x+5\right)-7\left(x+5\right)=0\\ \Leftrightarrow\left(2x-7\right)\left(x+5\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}2x-7=0\\x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{7}{2}\\x=-5\end{matrix}\right.\\ \\ \text{Vậy }S=\left\{\dfrac{7}{2};-5\right\}\)
\(\text{c) }8x^3-1=8x^2+4x+2\\ \Leftrightarrow\left(2x-1\right)\left(4x^2+2x+1\right)=2\left(4x^2+2x+1\right)\\ \Leftrightarrow2x-1=2\\ \Leftrightarrow2x=3\\ \Leftrightarrow x=\dfrac{3}{2}\\ \text{Vậy }S=\left\{\dfrac{3}{2}\right\}\)
\(\text{d) }\left(x^2+x+1\right)\left(x^2-x+1\right)=x^6-1\\ \Leftrightarrow\left(x^3+1\right)\left(x^3-1\right)=\left(x^2+x+1\right)\left(x^2-x+1\right)\\ \Leftrightarrow\left(x+1\right)\left(x^2+x+1\right)\left(x-1\right)\left(x^2-x+1\right)=\left(x^2+x+1\right)\left(x^2-x+1\right)\\ \Leftrightarrow\left(x+1\right)\left(x-1\right)=1\\ \Leftrightarrow x^2-1=1\\ \Leftrightarrow x^2=2\\ \Leftrightarrow x=\sqrt{2}\\ \text{Vậy }S=\left\{\sqrt{2}\right\}\)
\(\text{e) }\left(x^3+2x\right)\left(x^2+4\right)=\left(x^2+6x^2+8\right)\left(3-2x\right)\\ \Leftrightarrow x\left(x^2+2\right)\left(x^2+4\right)=\left(x^2+2x^2+4x^2+8\right)\left(3-2x\right)\\ \Leftrightarrow x\left(x^2+2\right)\left(x^2+4\right)=\left[\left(x^2+2x^2\right)+\left(4x^2+8\right)\right]\left(3-2x\right)\\ \Leftrightarrow x\left(x^2+2\right)\left(x^2+4\right)=\left[x^2\left(x^2+2\right)+4\left(x^2+2\right)\right]\left(3-2x\right)\\ \Leftrightarrow x\left(x^2+2\right)\left(x^2+4\right)=\left(x^2+4\right)\left(x^2+2\right)\left(3-2x\right)\\ \Leftrightarrow x=3-2x\\ \Leftrightarrow3x=3\\ \Leftrightarrow x=1\\ \text{Vậy }S=\left\{1\right\}\)
f) Kiểm tra lại hạng tử thứ 2 ở vế phải.
Bài 14:Tìm x
a,\(x-3=\left(3-x\right)^2\)
\(\Rightarrow\left(x-3\right)-\left(3-x\right)^2=0\)
\(\Rightarrow\left(x-3\right)+\left(x-3\right)^2=0\)
\(\Rightarrow\left(x-3\right)\left(1+x-3\right)=0\)
\(\Rightarrow\left(x-3\right)\left(x-2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-3=0\\x-2=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=3\\x=2\end{matrix}\right.\)
b,\(\left(2x-5\right)-\left(5+2x\right)^2=0\)
\(\Rightarrow\left(2x-5\right)+\left(2x-5\right)^2=0\)
\(\Rightarrow\left(2x-5\right)\left(1+2x-5\right)=0\)
\(\Rightarrow\left(2x-5\right)\left(2x-4\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}2x-5=0\\2x-4=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2x=5\\2x=4\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=2\end{matrix}\right.\)
Vì dài quá nên mình chỉ có thể trả lời được mấy câu thôi
Bài 1:
27x3 - 8 : (6x + 9x2 +4)
= (3x - 2) (9x2 + 6x + 4) : (9x2 + 6x + 4)
= 3x - 2
Bài 3:
a, 81x4 + 4 = (9x2)2 + 36x2 + 4 - 36x2
= (9x2 + 2)2 - (6x)2
= (9x2 + 6x + 2)(9x2 - 6x + 2)
b, x2 + 8x + 15 = x2 + 3x + 5x + 15
= x(x + 3) + 5(x + 3)
= (x + 3)(x + 5)
c, x2 - x - 12 = x2 + 3x - 4x - 12
= x(x + 3) - 4(x + 3)
= (x + 3) (x - 4)
Câu 1:
(27x3 - 8) : (6x + 9x2 + 4)
= (3x - 2)(9x2 + 6x + 4) : (6x + 9x2 + 4)
= 3x - 2
Câu 2:
a) (3x - 5)(2x+ 11) - (2x + 3)(3x + 7)
= 6x2 + 33x - 10x - 55 - 6x2 - 14x - 9x - 21
= -76
⇒ đccm
b) (2x + 3)(4x2 - 6x + 9) - 2(4x3 - 1)
= 8x3 + 27 - 8x3 + 2
= 29
⇒ đccm
Câu 3:
a) 81x4 + 4
= (9x2)2 + 22
= (9x2 + 2)2 - (6x)2
= (9x2 - 6x + 2)(9x2 + 6x + 2)
b) x2 + 8x + 15
= x2 + 3x + 5x + 15
= x(x + 3) + 5(x + 3)
= (x + 3)(x + 5)
c) x2 - x - 12
= x2 - 4x + 3x - 12
= x(x - 4) + 3(x - 4)
= (x - 4)(x + 3)
e:
Tham khảo:
a: \(\Leftrightarrow x^2-2x+1+4x^2+4x+4-5x^2+5=0\)
\(\Leftrightarrow2x+10=0\)
hay x=-5