K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 9 2016

b)đề là \(tan\left(x-15^0\right)=\frac{\sqrt{3}}{3}\)

Vì \(\frac{\sqrt{3}}{3}=tan30^0\) nên

\(\Leftrightarrow tan\left(x-15^0\right)=tan30^0\)

\(\Leftrightarrow x-15^0=30^0+k180^0\)

\(\Leftrightarrow x=45^0+k180^0\left(k\in Z\right)\)

8 tháng 9 2016

Đk:\(sin3x\ne0\) và \(cos\frac{2\pi}{5}\ne0\)

\(\Leftrightarrow\frac{cos3x}{sin3x}-\frac{sin\frac{2\pi}{5}}{cos\frac{2\pi}{5}}=0\)

\(\Leftrightarrow cos3x\cdot cos\frac{2\pi}{5}-sin\frac{2\pi}{5}\cdot sin3x=0\)

\(\Leftrightarrow cos\left(3x+\frac{2\pi}{5}\right)=0\)

\(\Leftrightarrow3x+\frac{2\pi}{5}=\frac{\pi}{2}+k\pi\)

\(\Leftrightarrow x=\frac{\pi}{30}+\frac{k\pi}{3}\)

NV
16 tháng 9 2020

b.

ĐKXĐ: ...

\(\Leftrightarrow\frac{\pi}{3}cot\pi x=\frac{\pi}{6}+k\pi\)

\(\Leftrightarrow cot\pi x=\frac{1}{2}+3k\)

\(\Leftrightarrow\pi x=arccot\left(\frac{1}{2}+3k\right)+n\pi\)

\(\Leftrightarrow x=\frac{1}{\pi}arccot\left(\frac{1}{2}+3k\right)+n\)

c.

\(\Leftrightarrow\left[{}\begin{matrix}\pi tan3x=\frac{\pi}{6}+k2\pi\\\pi tan3x=\frac{5\pi}{6}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}tan3x=\frac{1}{6}+2k\\tan3x=\frac{5}{6}+2k\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{1}{3}arctan\left(\frac{1}{6}+2k\right)+\frac{n2\pi}{3}\\x=\frac{1}{3}arctan\left(\frac{5}{6}+2k\right)+\frac{n2\pi}{3}\end{matrix}\right.\)

NV
16 tháng 9 2020

a/

\(\Leftrightarrow\frac{\pi}{2}sin\pi\left(x+1\right)=\frac{\pi}{4}+k\pi\)

\(\Leftrightarrow sin\pi\left(x+1\right)=\frac{1}{2}+2k\)

Do \(-1\le sin\pi\left(x+1\right)\le1\Rightarrow k=0\)

\(\Rightarrow sin\pi\left(x+1\right)=\frac{1}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}\pi\left(x+1\right)=\frac{\pi}{6}+k2\pi\\\pi\left(x+1\right)=\frac{5\pi}{6}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x+1=\frac{1}{6}+2k\\x+1=\frac{5}{6}+2k\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{5}{6}+2k\\x=-\frac{1}{6}+2k\end{matrix}\right.\)

18 tháng 5 2017

a) \(x=-45^0+k90^0,k\in\mathbb{Z}\)

b) \(x=-\dfrac{\pi}{6}+k\pi,k\in\mathbb{Z}\)

c) \(x=\dfrac{3\pi}{4}+k2\pi,k\in\mathbb{Z}\)

d) \(x=300^0+k540^0,k\in\mathbb{Z}\)

16 tháng 7 2020

\(\text{1) Đ}K:\left\{{}\begin{matrix}sinx\ne0\\1-sinx\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne m\pi\\x\ne\frac{\pi}{2}+n2\pi\end{matrix}\right.\)

\(2\text{) }ĐK:\left\{{}\begin{matrix}cos\left(2x+\frac{\pi}{3}\right)\ne0\\sinx\ne0\end{matrix}\right.\Leftrightarrow\\ \left\{{}\begin{matrix}2x+\frac{\pi}{3}\ne\frac{\pi}{2}+m\pi\\x\ne n\pi\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne\frac{\pi}{12}+\frac{m\pi}{2}\\x\ne n\pi\end{matrix}\right.\)

\(3\text{) }ĐK:\left\{{}\begin{matrix}\frac{5-3cos2x}{1+sin\left(2x-\frac{\pi}{2}\right)}\ge0\\1+sin\left(2x-\frac{\pi}{2}\right)\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5-3cos2x\ge0\\sin\left(2x-\frac{\pi}{2}\right)\ne-1\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}cos2x\le\frac{5}{3}\left(T/m\right)\\2x-\frac{\pi}{2}\ne\frac{3\pi}{2}+k2\pi\end{matrix}\right.\Leftrightarrow x\ne\pi+k\pi\)

\(4\text{) }ĐK:\left\{{}\begin{matrix}sin\left(x+\frac{\pi}{3}\right)\ne0\\cos\left(3x-\frac{\pi}{4}\right)\ne0\\tan\left(3x-\frac{\pi}{4}\right)\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+\frac{\pi}{3}\ne a\pi\\3x-\frac{\pi}{4}\ne\frac{\pi}{2}+b\pi\\3x-\frac{\pi}{4}\ne c\pi\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ne-\frac{\pi}{3}+a\pi\\x\ne\frac{\pi}{4}+\frac{b\pi}{3}\\x\ne\frac{\pi}{12}+\frac{c\pi}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne-\frac{\pi}{3}+a\pi\\x\ne\frac{\pi}{12}+\frac{k\pi}{6}\end{matrix}\right.\)