K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: =>x(7x-5)=0

=>x=0 hoặc x=5/7

b: \(\Leftrightarrow\sqrt{2}x^2-6x=0\)

\(\Leftrightarrow x\left(\sqrt{2}x-6\right)=0\)

hay \(x\in\left\{0;3\sqrt{2}\right\}\)

c: =>x(3,4x+8,2)=0

=>x=0 hoặc x=-82/34=-41/17

d: \(\Leftrightarrow x\left(\dfrac{2}{5}x+\dfrac{7}{3}\right)=0\)

=>x=0 hoặc x=-35/6

AH
Akai Haruma
Giáo viên
23 tháng 9 2018

a)

ĐKXĐ: \(x> \frac{-5}{7}\)

Ta có: \(\frac{9x-7}{\sqrt{7x+5}}=\sqrt{7x+5}\)

\(\Rightarrow 9x-7=\sqrt{7x+5}.\sqrt{7x+5}=7x+5\)

\(\Rightarrow 2x=12\Rightarrow x=6\) (hoàn toàn thỏa mãn)

Vậy......

b) ĐKXĐ: \(x\geq 5\)

\(\sqrt{4x-20}+3\sqrt{\frac{x-5}{9}}-\frac{1}{3}\sqrt{9x-45}=4\)

\(\Leftrightarrow \sqrt{4}.\sqrt{x-5}+3\sqrt{\frac{1}{9}}.\sqrt{x-5}-\frac{1}{3}\sqrt{9}.\sqrt{x-5}=4\)

\(\Leftrightarrow 2\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=4\)

\(\Leftrightarrow 2\sqrt{x-5}=4\Rightarrow \sqrt{x-5}=2\Rightarrow x-5=2^2=4\Rightarrow x=9\)

(hoàn toàn thỏa mãn)

Vậy..........

AH
Akai Haruma
Giáo viên
23 tháng 9 2018

c) ĐK: \(x\in \mathbb{R}\)

Đặt \(\sqrt{6x^2-12x+7}=a(a\geq 0)\Rightarrow 6x^2-12x+7=a^2\)

\(\Rightarrow 6(x^2-2x)=a^2-7\Rightarrow x^2-2x=\frac{a^2-7}{6}\)

Khi đó:

\(2x-x^2+\sqrt{6x^2-12x+7}=0\)

\(\Leftrightarrow \frac{7-a^2}{6}+a=0\)

\(\Leftrightarrow 7-a^2+6a=0\)

\(\Leftrightarrow -a(a+1)+7(a+1)=0\Leftrightarrow (a+1)(7-a)=0\)

\(\Rightarrow \left[\begin{matrix} a=-1\\ a=7\end{matrix}\right.\) \(\Rightarrow a=7\)\(a\geq 0\)

\(\Rightarrow 6x^2-12x+7=a^2=49\)

\(\Rightarrow 6x^2-12x-42=0\Leftrightarrow x^2-2x-7=0\)

\(\Leftrightarrow (x-1)^2=8\Rightarrow x=1\pm 2\sqrt{2}\)

(đều thỏa mãn)

Vậy..........

a)

5x2−3x=0⇔x(5x−3)=05x2−3x=0⇔x(5x−3)=0

⇔ x = 0 hoặc 5x – 3 =0

⇔ x = 0 hoặc x=35.x=35. Vậy phương trình có hai nghiệm: x1=0;x2=35x1=0;x2=35

Δ=(−3)2−4.5.0=9>0√Δ=√9=3x1=3+32.5=610=35x2=3−32.5=010=0Δ=(−3)2−4.5.0=9>0Δ=9=3x1=3+32.5=610=35x2=3−32.5=010=0

b)

3√5x2+6x=0⇔3x(√5x+2)=035x2+6x=0⇔3x(5x+2)=0

⇔ x = 0 hoặc √5x+2=05x+2=0

⇔ x = 0 hoặc x=−2√55x=−255

Vậy phương trình có hai nghiệm: x1=0;x2=−2√55x1=0;x2=−255

Δ=62−4.3√5.0=36>0√Δ=√36=6x1=−6+62.3√5=06√5=0x2=−6−62.3√5=−126√5=−2√55Δ=62−4.35.0=36>0Δ=36=6x1=−6+62.35=065=0x2=−6−62.35=−1265=−255

c)

2x2+7x=0⇔x(2x+7)=02x2+7x=0⇔x(2x+7)=0

⇔ x = 0 hoặc 2x + 7 = 0

⇔ x = 0 hoặc x=−72x=−72

Vậy phương trình có hai nghiệm: x1=0;x2=−72x1=0;x2=−72

Δ=72−4.2.0=49>0√Δ=√49=7x1=−7+72.2=04=0x2=−7−72.2=−144=−72Δ=72−4.2.0=49>0Δ=49=7x1=−7+72.2=04=0x2=−7−72.2=−144=−72

d)

2x2−√2x=0⇔x(2x−√2)=02x2−2x=0⇔x(2x−2)=0

⇔ x = 0 hoặc 2x−√2=02x−2=0

⇔ x = 0 hoặc x=√22x=22

Δ=(−√2)2−4.2.0=2>0√Δ=√2x1=√2+√22.2=2√24=√22x2=√2−√22.2=04=0

10 tháng 4 2017

Lời giải

a)\(\left\{{}\begin{matrix}a=7\\b=-2\\c=3\end{matrix}\right.\) \(\Rightarrow\Delta'=1-21=-20< 0\Rightarrow\left(a\right)VoN_0\)

(b) \(\left\{{}\begin{matrix}a=5\\b=2\sqrt{10}\\c=2\end{matrix}\right.\) \(\Rightarrow\Delta'=10-10=0\Rightarrow\left(b\right)\) có một nghiệm kép

(c) \(\left\{{}\begin{matrix}a=\dfrac{1}{2}\\b=7\\c=\dfrac{2}{3}\end{matrix}\right.\) \(\Rightarrow\Delta=49-4.\dfrac{1}{2}.\dfrac{2}{3}=49-\dfrac{4}{3}=\dfrac{143}{3}>0\) có hai nghiệm phân biệt

(d) \(\left\{{}\begin{matrix}a=1,7\\b=-1,2\\c=-2,1\end{matrix}\right.\) \(\Delta'=0,6^2+2,1.1,7>0\) pt có hai nghiệm phân biệt

a: Vì 7-9+2=0 nên pt có hai nghiệm là \(\left\{{}\begin{matrix}x_1=1\\x_2=\dfrac{2}{7}\end{matrix}\right.\)

b: Vì 23-(-9)-32=0 nên pt có hai nghiệm là: \(\left\{{}\begin{matrix}x_1=-1\\x_2=\dfrac{32}{23}\end{matrix}\right.\)

c: Vì \(1975+4-1979=0\)

nên pt có hai nghiệm là \(\left\{{}\begin{matrix}x_1=1\\x_2=-\dfrac{1979}{1975}\end{matrix}\right.\)

d: Vì \(5+\sqrt{2}+5-\sqrt{2}-10=0\)

nên pt có hai nghiệm là: \(\left\{{}\begin{matrix}x_1=1\\x_2=\dfrac{-10}{5+\sqrt{2}}\end{matrix}\right.\)

e: Vì \(\dfrac{1}{3}-\left(-\dfrac{3}{2}\right)-\dfrac{11}{6}=0\)

nên pt có hai nghiệm là: 

\(\left\{{}\begin{matrix}x_1=-1\\x_2=\dfrac{11}{6}:\dfrac{1}{3}=\dfrac{11}{6}\cdot3=\dfrac{11}{2}\end{matrix}\right.\)

f: Vì 31,1-50,9+19,8=0 nên phương trình có hai nghiệm là:

\(\left\{{}\begin{matrix}x_1=1\\x_2=\dfrac{198}{311}\end{matrix}\right.\)

a: \(\text{Δ}=\left(-5\right)^2-4\cdot3\cdot8=25-96< 0\)

Do đó: Phươbg trình vô nghiệm

b: \(\text{Δ}=\left(-3\right)^2-4\cdot15\cdot5=9-300< 0\)

Do đó: Phương trình vô nghiệm

c: \(\Leftrightarrow x^2-4x+4-3=0\)

\(\Leftrightarrow\left(x-2\right)^2=3\)

hay \(x\in\left\{2+\sqrt{3};2-\sqrt{3}\right\}\)

d: \(\Leftrightarrow3x^2+6x+x+2=0\)

=>(x+2)(3x+1)=0

=>x=-2 hoặc x=-1/3

a) Ta có: \(3x^2-5x+2=0\)

\(\Leftrightarrow3x^2-3x-2x+2=0\)

\(\Leftrightarrow3x\left(x-1\right)-2\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(3x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\3x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\3x=2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\frac{2}{3}\end{matrix}\right.\)

Vậy: Tập nghiệm \(S=\left\{1;\frac{2}{3}\right\}\)

b) Ta có: \(7x^2-5x-2=0\)

\(\Leftrightarrow7x^2-7x+2x-2=0\)

\(\Leftrightarrow7x\left(x-1\right)+2\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(7x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\7x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\7x=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\frac{-2}{7}\end{matrix}\right.\)

Vậy: Tập nghiệm \(S=\left\{1;\frac{-2}{7}\right\}\)

c) Ta có: \(\left(x^2+x\right)^2+5\left(x^2+x\right)+6=0\)

\(\Leftrightarrow\left(x^2+x\right)^2+2\left(x^2+x\right)+3\left(x^2+x\right)+6=0\)

\(\Leftrightarrow\left(x^2+x\right)\left(x^2+x+2\right)+3\left(x^2+x+2\right)=0\)

\(\Leftrightarrow\left(x^2+x+2\right)\left(x^2+x+3\right)=0\)(1)

Ta có: \(x^2+x+2\)

\(=x^2+2\cdot x\cdot\frac{1}{2}+\frac{1}{4}+\frac{7}{4}\)

\(=\left(x+\frac{1}{2}\right)^2+\frac{7}{4}\)

Ta có: \(\left(x+\frac{1}{2}\right)^2\ge0\forall x\)

\(\Rightarrow\left(x+\frac{1}{2}\right)^2+\frac{7}{4}\ge\frac{7}{4}>0\forall x\)

hay \(x^2+x+2\ne0\forall x\)(2)

Ta có: \(x^2+x+3\)

\(=x^2+2\cdot x\cdot\frac{1}{2}+\frac{1}{4}+\frac{11}{4}\)

\(=\left(x+\frac{1}{2}\right)^2+\frac{11}{4}\)

Ta có: \(\left(x+\frac{1}{2}\right)^2\ge0\forall x\)

\(\Rightarrow\left(x+\frac{1}{2}\right)^2+\frac{11}{4}\ge\frac{11}{4}>0\forall x\)

hay \(x^2+x+3\ne0\forall x\)(3)

Từ (1), (2) và (3) suy ra \(x\in\varnothing\)

Vậy: Tập nghiệm \(S=\varnothing\)

d) Ta có: \(x-7\sqrt{x}-9=0\)

\(\Leftrightarrow\left(\sqrt{x}\right)^2-2\cdot\sqrt{x}\cdot\frac{7}{2}+\frac{49}{4}-\frac{49}{4}-\frac{36}{4}=0\)

\(\Leftrightarrow\left(\sqrt{x}-\frac{7}{2}\right)^2=\frac{85}{4}\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}-\frac{7}{2}=\frac{\sqrt{85}}{2}\\\sqrt{x}-\frac{7}{2}=-\frac{\sqrt{85}}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=\frac{\sqrt{85}}{2}+\frac{7}{2}=\frac{\sqrt{85}+7}{2}\\\sqrt{x}=\frac{-\sqrt{85}}{2}+\frac{7}{2}=\frac{7-\sqrt{85}}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\left(\frac{\sqrt{85}+7}{2}\right)^2=\frac{67+7\sqrt{85}}{2}\\x=\left(\frac{7-\sqrt{85}}{2}\right)^2=\frac{67-7\sqrt{85}}{2}\end{matrix}\right.\)

Vậy: Tập nghiệm \(S=\left\{\frac{67+7\sqrt{85}}{2};\frac{67-7\sqrt{85}}{2}\right\}\)

e) Ta có: \(x-5\sqrt{x}+4=0\)

\(\Leftrightarrow x-\sqrt{x}-4\sqrt{x}+4=0\)

\(\Leftrightarrow\sqrt{x}\left(\sqrt{x}-1\right)-4\left(\sqrt{x}-1\right)=0\)

\(\Leftrightarrow\left(\sqrt{x}-1\right)\left(\sqrt{x}-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}-1=0\\\sqrt{x}-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=1\\\sqrt{x}=4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=16\end{matrix}\right.\)

Vậy: Tập nghiệm S={1;16}

19 tháng 7 2018

câu a nè:

http://123link.pw/0Qyw5v

19 tháng 7 2018

câu d nè : http://123link.pw/Jx46C

nhớ cho đúng nha ^-^

21 tháng 6 2017

Hàm số y = ax^2 (a khác 0). Phương trình bậc hai một ẩn

4 tháng 4 2017

a) 3(x2 + x)2 – 2(x2 + x) – 1 = 0. Đặt t = x2 + x, ta có:

3t2 – 2t – 1 = 0; t1 = 1, t2 =

Với t1 = 1, ta có: x2 + x = 1 hay x2 + x – 1 = 0, ∆ = 4 + 1 = 5, √∆ = √5

x1 = , x2 =

Với t2 = , ta có: x2 + x = hay 3x2 + 3x + 1 = 0:

Phương trình vô nghiệm, vì ∆ = 9 – 4 . 3 . 1 = -3 < 0

Vậy phương trình đã cho có hai nghiệm: x1 = , x2 =

b) (x2 – 4x + 2)2 + x2 – 4x – 4 = 0

Đặt t = x2 – 4x + 2, ta có phương trình t2 + t – 6 = 0

Giải ra ta được t1 = 2, t2 = -3.

- Với t1 = 2 ta có: x2 – 4x + 2 = 2 hay x2 – 4x = 0. Suy ra x1 = 0, x2 = 4.

- Với t1 = -3, ta có: x2 – 4x + 2 = -3 hay x2 – 4x + 5 = 0.

Phương trình này vô nghiệm vì ∆ = (-4)2 – 4 . 1 . 5 = 16 – 20 = -4 < 0

Vậy phương trình đã cho có hai nghiệm: x1 = 0, x2 = 4.

c) x - √x = 5√x + 7 ⇔ x - 6√x – 7 = 0. Điều kiện: x ≥ 0. Đặt t = √x, t ≥ 0

Ta có: t2 – 6t – 7 = 0. Suy ra: t1 = -1 (loại), t2 = 7

Với t = 7, ta có: √x = 7. Suy ra x = 49.

Vậy phương trình đã cho có một nghiệm: x = 49

d) – 10 . = 3. Điều kiện: x ≠ -1, x ≠ 0

Đặt = t, ta có: = . Vậy ta có phương trình: t - – 3 = 0

hay: t2 – 3t – 10 = 0. Suy ra t1 = 5, t2 = -2.

- Với t1 = 5, ta có = 5 hay x = 5x + 5. Suy ra x =

- Với t2 = -2, ta có = -2 hay x = -2x – 2. Suy ra x = .

Vậy phương trình đã cho có hai nghiệm: x1 = , x2 =