K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 1 2017

a)

\(\Leftrightarrow yz=z^2+2z+3\Leftrightarrow z\left(y-2-z\right)=3\)

\(\hept{\begin{cases}z=\left\{-3,-1,1,3\right\}\\y-2-z=\left\{-1,-3,3,1\right\}\end{cases}\Rightarrow\hept{\begin{cases}x=\left\{-2,0,2,4\right\}\\y=\left\{-2,-4,6,6\right\}\end{cases}}}\)

20 tháng 7 2017

câu 1,2 nhân 4 vào 2 vế đưa về dạng a2-b2=q(q là số nguyên) rồi tách thành phương trình ước số => tự giải tiếp

còn câu 3 tui hông nghĩ ra....

21 tháng 7 2017

Thanks bạn

5 tháng 9 2020

Ta có:

x(x2+x+1)=4y(y+1)x(x2+x+1)=4y(y+1)

⟺x3+x2+x+1=4y2+4y+1⟺x3+x2+x+1=4y2+4y+1

⟺(x2+1)(x+1)=(2y+1)2⟺(x2+1)(x+1)=(2y+1)2 (*)

Đặt (x2+1;x+1)=d(x2+1;x+1)=d

⟹(x+1)(x−1)−(x2+1)⋮d⟹(x+1)(x−1)−(x2+1)⋮d

⟹2⋮d⟹2⋮d

Dễ thầy VPVP của phương trình (∗)(∗) là số lẻ nên chỉ xảy ra trường hợp d=±1d=±1

⟹x2+1=a2⟹x2+1=a2 và x+1=b2x+1=b2

Từ đây dễ dàng suy ra x=0x=0

⟹y=0;y=−1⟹y=0;y=−1

Thử lại ta thấy (x;y)=(0;0);(0;−1)(x;y)=(0;0);(0;−1)

15 tháng 6 2019

Ta chia thành 2 trường hợp : 
a)y2+y=x4+x3+x2+x=0 (1) 
...(1)<=>y(y+1)=x(x3+x2+x+1)=0 
...Pt này có 4 nghiệm sau 
...x1=0; y1=0 
...x2=0; y2= -1 
...x3= -1; y3=0 
...x4= -1; y4= -1 
b)y2+y=x4+x3+x2+x (# 0) (2) 
...ĐK để 2 vế khác 0 là x và y đều phải khác 0 và -1.Với ĐK đó thì 
...(2)<=>y(y+1)=(x2)(x2+x+1+1x1x
...Đến đây lại chia 2 th : 
...+{y=x2 
.....{x+1+1x1x=1 (3) 
.....(3) vô nghiệm =>th này vô nghiệm 
...+{y+1=x2
.....{x+1+1x1x= -1 
....=>x= -1; y=0 (theo ĐK ở trên nghiệm này phải loại) 
...Vậy khi y2+y=x4+x3+x2+x # 0 thì pt vô nghiệm 
Tóm lại pt đã cho có 4 nghiệm 
x1=0; y1=0 
x2=0; y2= -1 
x3= -1; y3=0 
x4= -1; y4= -1

P/s:Mik ko chắc

21 tháng 3 2016

bạn kẹp giữa X3 và  ( X+2)là ra kết quả