Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Em xin phép làm bài EZ nhất :)
4,ĐK :\(\forall x\in R\)
Đặt \(x^2+x+2=t\) (\(t\ge\dfrac{7}{4}\))
\(PT\Leftrightarrow\sqrt{t+5}+\sqrt{t}=\sqrt{3t+13}\)
\(\Leftrightarrow2t+5+2\sqrt{t\left(t+5\right)}=3t+13\)
\(\Leftrightarrow t+8=2\sqrt{t^2+5t}\)
\(\Leftrightarrow\left\{{}\begin{matrix}t\ge-8\\\left(t+8\right)^2=4t^2+20t\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}t\ge\dfrac{7}{4}\\3t^2+4t-64=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}t\ge\dfrac{7}{4}\\\left(t-4\right)\left(3t+16\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}t\ge\dfrac{7}{4}\\\left[{}\begin{matrix}t=4\left(tm\right)\\t=-\dfrac{16}{3}\left(l\right)\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow x^2+x+2=4\)\(\Leftrightarrow x^2+x-2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)
Vậy ....
\(\sqrt{3x^2+6x+12}+\sqrt{5x^2-10x^2+9}=\sqrt{3\left(x^2+2x+1\right)+9}+\sqrt{5\left(x^2-2x+1\right)+4}\)
\(\ge\sqrt{9}+\sqrt{4}=3+2=5\)
ĐKXĐ: \(-1\le x\le7\)
Ta có: \(VT\le\sqrt{2\left(x+1+7-x\right)}=4\)
\(VP=\left(x-3\right)^2+4\ge4\)
\(\Rightarrow VT\le VP\)
\(\Rightarrow\) BPT có nghiệm khi \(VT=VP\Leftrightarrow\left\{{}\begin{matrix}x+1=7-x\\x-3=0\end{matrix}\right.\) \(\Rightarrow x=3\)
\(A=\frac{x^2+5x+6+x\sqrt{9-x^2}}{3x-x^2+\left(x+2\right)\sqrt{9-x^2}}\)
\(=\frac{\left(x+2\right)\left(x+3\right)+x\sqrt{\left(3-x\right)\left(3+x\right)}}{x\left(3-x\right)+\left(x+2\right)\sqrt{\left(3-x\right)\left(3+x\right)}}\)
\(=\frac{\left(x+2\right)\left(x+3\right)+x\sqrt{\left(3-x\right)\left(3+x\right)}}{x\left(3-x\right)+\left(x+2\right)\sqrt{\left(3-x\right)\left(3+x\right)}}\)
\(=\frac{\sqrt{3+x}\left(\left(x+2\right)\sqrt{x+3}+x\sqrt{3-x}\right)}{\sqrt{3-x}\left(\left(x+2\right)\sqrt{x+3}+x\sqrt{3-x}\right)}\)
\(=\frac{\sqrt{3+x}}{\sqrt{3-x}}\)
\(B=\frac{x^2-5x+6+3\sqrt{x^2-6x+8}}{3x-12+\left(x-3\right)\sqrt{x^2-6x+8}}\)
\(=\frac{\left(x-3\right)\left(x-2\right)+3\sqrt{\left(x-4\right)\left(x-2\right)}}{3\left(x-4\right)+\left(x-3\right)\sqrt{\left(x-4\right)\left(x-2\right)}}\)
\(=\frac{\sqrt{x-2}\left(\left(x-3\right)\sqrt{x-2}+3\sqrt{x-4}\right)}{\sqrt{x-4}\left(3\sqrt{x-4}+\left(x-3\right)\sqrt{x-2}\right)}\)
\(=\frac{\sqrt{x-2}}{\sqrt{x-4}}\)
ĐKXĐ: x>=0; y>=1 ; z>=2.
câu 1:Từ giả thiết ta có:
\(2\sqrt{x}+2\sqrt{y-1}+2\sqrt{z-2}=x+y+z\)
\(\Leftrightarrow x-2\sqrt{x}+1+\left(y-1\right)-2\sqrt{y-1}+1+\left(z-2\right)-2\sqrt{z-2}+1=0\)
\(\Leftrightarrow\left(\sqrt{x}-1\right)^2+\left(\sqrt{y-1}-1\right)^2+\left(\sqrt{z-2}-1\right)^2=0\)
\(\Leftrightarrow\sqrt{x}=1;\sqrt{y-1}=1;\sqrt{z-2}=1\)
Vậy x=1;y=2;z=3.
Có gì ko hiểu bạn cứ bình luận phía dưới :)
a)\(pt\Leftrightarrow\sqrt{3x^2-6x+4}+\sqrt{2x^2-4x+6}+x^2-2x-2=0\)
\(\Leftrightarrow\sqrt{3x^2-6x+4}-1+\sqrt{2x^2-4x+6}-2+x^2-2x+1=0\)
\(\Leftrightarrow\dfrac{3x^2-6x+4-1}{\sqrt{3x^2-6x+4}+1}+\dfrac{2x^2-4x+6-4}{\sqrt{2x^2-4x+6}+2}+\left(x-1\right)^2=0\)
\(\Leftrightarrow\dfrac{3\left(x-1\right)^2}{\sqrt{3x^2-6x+4}+1}+\dfrac{2\left(x-1\right)^2}{\sqrt{2x^2-4x+6}+2}+\left(x-1\right)^2=0\)
\(\Leftrightarrow\left(x-1\right)^2\left(\dfrac{3}{\sqrt{3x^2-6x+4}+1}+\dfrac{2}{\sqrt{2x^2-4x+6}-2}+1\right)=0\)
Dễ thấy: \(\dfrac{3}{\sqrt{3x^2-6x+4}+1}+\dfrac{2}{\sqrt{2x^2-4x+6}-2}+1>0\)
\(\Rightarrow\left(x-1\right)^2=0\Rightarrow x-1=0\Rightarrow x=1\)
b)\(\sqrt{3x^2+6x+12}+\sqrt{5x^4-10x^2+9}=3-4x-2x^2\)
\(pt\Leftrightarrow\sqrt{3x^2+6x+12}+\sqrt{5x^4-10x^2+9}+2x^2+4x-3=0\)
\(\Leftrightarrow\sqrt{3x^2+6x+12}-3+\sqrt{5x^4-10x^2+9}-2+2x^2+4x-8=0\)
\(\Leftrightarrow\sqrt{3x^2+6x+12}-3+\sqrt{5x^4-10x^2+9}-2+2x^2+4x+2=0\)
\(\Leftrightarrow\dfrac{3x^2+6x+12-9}{\sqrt{3x^2+6x+12}+3}+\dfrac{5x^4-10x^2+9-4}{\sqrt{5x^4-10x^2+9}+2}+2\left(x^2+2x+1\right)=0\)
\(\Leftrightarrow\dfrac{3\left(x+1\right)^2}{\sqrt{3x^2+6x+12}+3}+\dfrac{5\left(x+1\right)^2\left(x-1\right)^2}{\sqrt{5x^4-10x^2+9}+2}+2\left(x+1\right)^2=0\)
\(\Leftrightarrow\left(x+1\right)^2\left(\dfrac{3}{\sqrt{3x^2+6x+12}+3}+\dfrac{5\left(x-1\right)^2}{\sqrt{5x^4-10x^2+9}+2}+2\right)=0\)
Dễ thấy: \(\dfrac{3}{\sqrt{3x^2+6x+12}+3}+\dfrac{5\left(x-1\right)^2}{\sqrt{5x^4-10x^2+9}+2}+2>0\)
\(\Rightarrow\left(x+1\right)^2=0\Rightarrow x+1=0\Rightarrow x=-1\)
1)
ĐK: \(x\geq 5\)
PT \(\Leftrightarrow \sqrt{4(x-5)}+3\sqrt{\frac{x-5}{9}}-\frac{1}{3}\sqrt{9(x-5)}=6\)
\(\Leftrightarrow \sqrt{4}.\sqrt{x-5}+3\sqrt{\frac{1}{9}}.\sqrt{x-5}-\frac{1}{3}.\sqrt{9}.\sqrt{x-5}=6\)
\(\Leftrightarrow 2\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=6\)
\(\Leftrightarrow 2\sqrt{x-5}=6\Rightarrow \sqrt{x-5}=3\Rightarrow x=3^2+5=14\)
2)
ĐK: \(x\geq -1\)
\(\sqrt{x+1}+\sqrt{x+6}=5\)
\(\Leftrightarrow (\sqrt{x+1}-2)+(\sqrt{x+6}-3)=0\)
\(\Leftrightarrow \frac{x+1-2^2}{\sqrt{x+1}+2}+\frac{x+6-3^2}{\sqrt{x+6}+3}=0\)
\(\Leftrightarrow \frac{x-3}{\sqrt{x+1}+2}+\frac{x-3}{\sqrt{x+6}+3}=0\)
\(\Leftrightarrow (x-3)\left(\frac{1}{\sqrt{x+1}+2}+\frac{1}{\sqrt{x+6}+3}\right)=0\)
Vì \(\frac{1}{\sqrt{x+1}+2}+\frac{1}{\sqrt{x+6}+3}>0, \forall x\geq -1\) nên $x-3=0$
\(\Rightarrow x=3\) (thỏa mãn)
Vậy .............